当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tunable Interfacial Charge Transfer in a 2D–2D Composite for Efficient Visible-Light-Driven CO2 Conversion
Advanced Materials ( IF 27.4 ) Pub Date : 2023-03-25 , DOI: 10.1002/adma.202300643
Lizhong Liu 1 , Zhongliao Wang 1 , Jinfeng Zhang 1 , Olim Ruzimuradov 2 , Kai Dai 1 , Jingxiang Low 3
Affiliation  

Photocatalytic CO2 conversion for hydrocarbon fuel production has been known as one of the most promising strategies for achieving carbon neutrality. Yet, its conversion efficiency remains unsatisfactory mainly due to its severe charge-transfer resistance and slow charge kinetics. Herein, a tunable interfacial charge transfer on an oxygen-vacancies-modified bismuth molybdate nanoflower assembled by 2D nanosheets (BMOVs) and 2D bismuthene composite (Bi/BMOVs) is demonstrated for photocatalytic CO2 conversion. Specifically, the meticulous design of the Ohmic contact formed between BMOVs and bismuthene can allow the modulation of the interfacial charge-transfer resistance. According to density functional theory (DFT) simulations, it is ascertained that such exceptional charge kinetics is attributed to the tunable built-in electric field (IEF) of the Ohmic contact. As such, the photocatalytic CO2 reduction performance of the optimized Bi/BMOVs (CO and CH4 productions rate of 169.93 and 4.65 µmol g−1 h−1, respectively) is ca. 10 times higher than that of the pristine BMO (CO and CH4 production rates of 16.06 and 0.51 µmol g−1 h−1, respectively). The tunable interfacial resistance of the Ohmic contact reported in this work can shed some important light on the design of highly efficient photocatalysts for both energy and environmental applications.

中文翻译:

2D-2D 复合材料中可调谐界面电荷转移,实现高效可见光驱动的 CO2 转换

用于碳氢化合物燃料生产的光催化CO 2转化被认为是实现碳中和的最有前途的策略之一。然而,其转换效率仍然不能令人满意,这主要是由于其严重的电荷转移阻力和缓慢的充电动力学。在此,通过二维纳米片(BMOV)和二维铋烯复合物(Bi/BMOV)组装的氧空位改性钼酸铋纳米花上的可调界面电荷转移被证明用于光催化CO 2转换。具体来说,BMOV 和铋之间形成的欧姆接触的精心设计可以调节界面电荷转移电阻。根据密度泛函理论(DFT)模拟,可以确定这种特殊的电荷动力学归因于欧姆接触的可调内置电场(IEF)。因此,优化的Bi/BMOVs的光催化CO 2还原性能(CO和CH 4生产率分别为169.93和4.65 µmol g -1 h -1)约为。比原始 BMO 高 10 倍(CO 和 CH 4生产率分别为 16.06 和 0.51 µmol g −1 h −1, 分别)。这项工作中报道的欧姆接触的可调界面电阻可以为能源和环境应用的高效光催化剂的设计提供一些重要的启示。
更新日期:2023-03-25
down
wechat
bug