当前位置: X-MOL 学术Inorg. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synergy of oxygen defects and structural modulation on titanium niobium oxide with a constructed conductive network for high-rate lithium-ion half/full batteries
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2023-03-24 , DOI: 10.1039/d3qi00182b
Yangyang Sui 1 , Jinpeng Guan 1 , Kaiyang Li 1 , Yubo Feng 1 , Shengjie Peng 2 , Maxim Yu. Maximov 3 , Quan Liu 1 , Jun Yang 4 , Hongbo Geng 1
Affiliation  

Titanium niobium oxide as an electrode material for lithium-ion batteries (LIBs) has relatively high working potential and theoretical capacity, which is expected to replace a graphite anode. However, it possesses low electronic conductivity, leading to the internal electrochemical polarization of the battery during high current charging, which is mainly reflected in the large difference between the actual electrode capacity and the theoretical capacity, as well as the unsatisfactory rate performance. In this work, a strategy of oxygen defect creation and structural modulation of Ti2Nb10O29 (TNO) was applied to synthesize oxygen-deficient N-doped carbon and graphene-covered TNO (Od-TNO@NC-G). The electronic conductivity of TNO is significantly increased by this precise Od-TNO@NC-G structure, which is advantageous for increasing the electrochemical kinetics and modulating stress release during Li+ (de)insertion. As applied in LIBs, Od-TNO@NC-G delivers a high capacity of 235 mA h g−1 after 200 cycles at 1 C, which is comparable with pure TNO (112 mA h g−1 after 200 cycles at 1 C). Impressively, an ultra-stable cycle life assessment over 20 000 cycles of Od-TNO@NC-G can be achieved at 10 C. For the purpose of verifying the functionality of oxygen defects in Od-TNO@NC-G for LIBs, thorough first-principles calculations were done. The Od-TNO@NC-G//LiFePO4 pouch cell was constructed, also exhibiting a magnificent capacity of 116 mA h g−1 after 2000 cycles at 5 C (capacity retention: 93.8%). This excellent LIB performance is due to the synergistic effect of oxygen vacancy and double carbon coating structure of Od-TNO@NC-G. We provide a thorough comprehension of Od-TNO@NC-G for superior LIB performance from both practical and theoretical viewpoints, opening the door for the development of next-generation advanced energy storage systems.

中文翻译:

氧缺陷和结构调制对钛铌氧化物的协同作用与构建的高倍率锂离子半/全电池导电网络

钛铌氧化物作为锂离子电池(LIBs)的电极材料具有较高的工作电位和理论容量,有望替代石墨负极。但其电子电导率低,导致电池在大电流充电时发生内部电化学极化,主要体现在实际电极容量与理论容量相差较大,倍率性能不理想。在这项工作中,Ti 2 Nb 10 O 29 (TNO)的氧缺陷产生和结构调制策略被应用于合成缺氧的 N 掺杂碳和石墨烯覆盖的 TNO (O d-TNO@NC-G)。这种精确的 O d -TNO@NC-G 结构显着提高了 TNO 的电子电导率,这有利于提高电化学动力学和调节 Li +(去)插入过程中的应力释放。当应用于 LIB 时,O d -TNO@NC-G 在 1 C 下 200 次循环后提供 235 mA hg -1的高容量,这与纯 TNO(在 1 C 下 200 次循环后 112 mA hg -1 )相当。令人印象深刻的是,在 10 C 下可以实现超过 20 000 次 O d -TNO@NC-G循环的超稳定循环寿命评估。为了验证LIB 的O d -TNO@NC-G 中氧缺陷的功能,进行了彻底的第一性原理计算。欧构建了d -TNO@NC-G//LiFePO 4软包电池,在 5 C 下循环 2000 次后也表现出 116 mA hg -1的惊人容量(容量保持率:93.8%)。这种优异的锂离子电池性能是由于O d -TNO@NC-G的氧空位和双碳涂层结构的协同作用。我们从实践和理论的角度全面了解 O d -TNO@NC-G 以获得卓越的 LIB 性能,为下一代先进储能系统的开发打开大门。
更新日期:2023-03-24
down
wechat
bug