当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Defect Modulation in Cobalt Manganese Oxide Sheets for Stable and High-Energy Aqueous Aluminum-Ion Batteries
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-03-22 , DOI: 10.1002/adfm.202301202
Jinlin Yang 1, 2, 3 , Wenbin Gong 2 , Fengxia Geng 1
Affiliation  

Rechargeable aqueous Al-ion batteries (AIBs) are promising low-cost, safe, and high energy density systems for large-scale energy storage. However, the strong electrostatic interaction between the Al3+ and the host material, usually leads to sluggish Al3+ diffusion kinetics and severe structure collapse of the cathode material. Consequently, aqueous AIBs currently suffer from low energy density as well as inferior rate capability and cycling stability. Here, defective cobalt manganese oxide nanosheets are reported as cathode material for aqueous AIBs to improve both reaction kinetics and stability, delivering a record high energy density of 685 Wh kg−1 (based on the masses of the cathode and anode) and a reversible capacity of 585 mAh g−1 at 100 mA g−1 with a retention of 78% after 300 cycles. The impressive energy density and cycling stability are due to a synergistic effect between the substituted cobalt atoms and the manganese vacancies, which improve the structural stability and promote both electron conductivity and ion diffusion. When applied in aqueous Zn-ion batteries, a high specific energy of 390 Wh kg−1 at 100 mA g−1 is realized while retaining 84% initial capacity over 1000 cycles. The study offers a new pathway to building next-generation high-energy aqueous rechargeable metal batteries.

中文翻译:

用于稳定和高能水系铝离子电池的钴锰氧化物片的缺陷调制

可充电水系铝离子电池 (AIB) 是用于大规模储能的低成本、安全和高能量密度系统。然而,Al 3+与主体材料之间的强静电相互作用通常导致缓慢的Al 3+扩散动力学和阴极材料的严重结构坍塌。因此,水性 AIB 目前存在低能量密度以及较差的倍率性能和循环稳定性。在这里,有缺陷的钴锰氧化物纳米片被报道为水性 AIB 的阴极材料,以改善反应动力学和稳定性,提供创纪录的 685 Wh kg -1的高能量密度(基于阴极和阳极的质量)和可逆容量585 mAh g −1在 100 mA g -1下,300 次循环后保留率为 78%。令人印象深刻的能量密度和循环稳定性归因于取代的钴原子和锰空位之间的协同效应,这提高了结构稳定性并促进了电子导电性和离子扩散。当应用于水系锌离子电池时,在 100 mA g -1时实现了390 Wh kg -1的高比能量,同时在 1000 次循环中保持 84% 的初始容量。该研究为构建下一代高能水系可充电金属电池提供了一条新途径。
更新日期:2023-03-26
down
wechat
bug