Applied Surface Science ( IF 6.3 ) Pub Date : 2023-03-22 , DOI: 10.1016/j.apsusc.2023.157100 Lan Ding , Yuning Li , Yongping Ding , Fenghua Bai , Ben Jia , Huiqin Li , Xiaojing Wang
Recently, capturing and photocatalytically converting CO2 to carbon fuels has been demonstrated as a sustainable and green approach to solve the issue of greenhouse gas with good efficiency and low cost. However, the most photocatalysts suffer from low solar light harvest and poor CO2 adsorption capacity. Here, the BiOCl nanoflowers have been in situ planted on Bi-MOF nanosheets to form BiOCl/Bi-MOF hybrids, in which BiOCl flowers contribute to harvest solar light and Bi-MOF nanosheets response to capture CO2. Moreover, by the shared Bi-Cl bonding linkage, the smoothly tunnels is constructed to quickly transport photo-generated carriers. Hence, the assembly presents excellent CO2 capture and light-driven CO2-conversion activity, reaching up to 456.7 μmol⋅g−1⋅h−1. Furthermore, different from the quickly decreased activity of the pristine BiOCl during the reaction proceeding, the CO2 photoreduction performance of BiOCl/Bi-MOF hybrid does not change much under wet air with consecutive eight hours recycle. The present investigation may provide a new strategy to prepare highly effective photocatalysts by in situ constructing bifunctional heterojunctions in the application of CO2 capture and visible-light-driven conversion.
中文翻译:
通过共享 Bi-Cl 键组装双功能 BiOCl/Bi-MOF 催化剂:实现超高效 CO2 捕获和光还原
近来,捕获CO 2并将其光催化转化为碳燃料已被证明是解决温室气体问题的可持续和绿色方法,具有良好的效率和低成本。然而,大多数光催化剂都存在太阳光收集量低和CO 2吸附能力差的问题。在这里,BiOCl 纳米花已原位种植在 Bi-MOF 纳米片上以形成 BiOCl/Bi-MOF 杂化物,其中 BiOCl 花有助于收获太阳光,而 Bi-MOF 纳米片响应捕获 CO 2。此外,通过共享的 Bi-Cl 键合连接,构建了平滑的隧道以快速传输光生载流子。因此,该组件呈现出出色的 CO 2捕获和光驱动 CO 2-转化活性,高达 456.7 μmol⋅g −1 ⋅h −1。此外,与反应过程中原始BiOCl的活性迅速降低不同,BiOCl/Bi-MOF杂化物的CO 2光还原性能在连续8小时循环的湿空气下没有太大变化。本研究可能为通过原位构建双功能异质结制备高效光催化剂提供一种新策略,用于CO 2捕获和可见光驱动转化。