当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-depth Li+ transportation in three-dimensionalized nanodiamond network for improved liquid and solid lithium metal batteries
Nano Energy ( IF 16.8 ) Pub Date : 2023-03-22 , DOI: 10.1016/j.nanoen.2023.108370
Zhendong Li , Wenjun Liang , Jiahe Chen , Libo Song , Tengpeng Xiong , Weiping Xie , Sudong Wu , Di Hu , Xiayin Yao , Zhe Peng

Confining lithium (Li) deposition in three-dimensional scaffold is commonly employed to suppress Li dendrite and enhance the cycling stability of next generation Li metal batteries (LMBs). However, the efficiency of this strategy is often degraded under lean-Li conditions, due to the serious precipitation of deposited Li on the top surface of the electronic conducting scaffold such as carbon or metal matrix. Here it is found that building an insulating interlayer on the scaffold but with a high Li+ transfer dynamism, can be a promising strategy to address the above challenge. We successfully three-dimensionalize an insulating and robust nanodiamond (ND) network on carbon paper (CP) via chemical vapor deposition, which not only retards the electron transfer to avoid the top Li precipitation, but also exhibits impressive Li affinity and mobility to undergo an in-depth Li+ transportation throughout the scaffold. Based on this advanced three-dimensionalized ND network, the Li anode performance in CP@ND significantly exceeds that in the traditional carbon fiber matrix, particularly under lean-Li conditions. Furthermore, the application of CP@ND leads to a sharply improved cyclability of all-solid-state LMBs, establishing a novel guideline of protecting Li anode in the electrolyte-mobility-limited environment.



中文翻译:

用于改进液态和固态锂金属电池的三维纳米金刚石网络中的深度 Li+ 传输

将锂 (Li) 沉积限制在三维支架中通常用于抑制锂枝晶并提高下一代锂金属电池 (LMB) 的循环稳定性。然而,由于在电子导电支架(如碳或金属基体)的顶面上沉积的锂严重沉淀,这种策略的效率在贫锂条件下往往会降低。这里发现在脚手架上构建绝缘夹层但具有高 Li +转移动力,可能是解决上述挑战的一个有前途的战略。我们通过化学气相沉积在复写纸 (CP) 上成功地三维化了绝缘且坚固的纳米金刚石 (ND) 网络,这不仅延迟了电子转移以避免顶部 Li 沉淀,而且还表现出令人印象深刻的 Li 亲和力和流动性以进行深入李+整个脚手架的运输。基于这种先进的三维 ND 网络,CP@ND 中的锂负极性能显着超过传统碳纤维基体,特别是在贫锂条件下。此外,CP@ND 的应用可显着提高全固态 LMB 的循环性能,从而建立了在电解质迁移率受限的环境中保护锂负极的新指南。

更新日期:2023-03-23
down
wechat
bug