当前位置:
X-MOL 学术
›
Carbon Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhancing reversibility of LiNi0.5Mn1.5O4 by regulating surface oxygen deficiency
Carbon Energy ( IF 19.5 ) Pub Date : 2023-03-20 , DOI: 10.1002/cey2.338
Dandan Wang 1 , Cong Gao 1 , Xuefeng Zhou 1 , Shang Peng 1 , Mingxue Tang 1 , Yonggang Wang 1 , Lujun Huang 2 , Wenge Yang 1 , Xiang Gao 1
Carbon Energy ( IF 19.5 ) Pub Date : 2023-03-20 , DOI: 10.1002/cey2.338
Dandan Wang 1 , Cong Gao 1 , Xuefeng Zhou 1 , Shang Peng 1 , Mingxue Tang 1 , Yonggang Wang 1 , Lujun Huang 2 , Wenge Yang 1 , Xiang Gao 1
Affiliation
![]() |
Oxygen deficiency has crucial effects on the crystal structure and electrochemical performance of spinel oxide lithium electrode materials such as LiNi0.5Mn1.5O4 (LNMO) cathode. In particular, the oxygen stoichiometry on the crystal surface differs from that on the crystal interior in LNMO. The detection of local oxygen loss in LNMO and its correlation with the crystal structure and the cycling stability of LNMO remain challenging. In this study, the effect of oxygen deficiency in LNMO controlled by sintering temperature on the surface crystal structure and electrochemical performance of LNMO is comprehensively investigated. The high concentration of oxygen vacancies segregates at the surface regions of LNMO forming a thin rock-salt and/or deficient spinel surface layer. The atomic-level surface structure reconstruction was demonstrated by annular dark-field and annular bright-field techniques. For the synthesis of LNMO, the higher sintering temperature results in higher crystallinity but the higher oxygen deficiency in LNMO. The high crystallinity of LNMO would increase the thermal stability of LNMO cathodes while the high content of oxygen deficiency would decrease the surface structural stability of LNMO. Therefore, the LNMO sintered at a medium temperature of 850°C achieved the best capacity retention. The results suggest a competitive function mechanism between oxygen stoichiometry and the crystallinity of LNMO on the cycling performance of LNMO.
中文翻译:
通过调节表面缺氧增强LiNi0.5Mn1.5O4的可逆性
缺氧对尖晶石氧化物锂电极材料如LiNi 0.5 Mn 1.5 O 4 (LNMO)正极的晶体结构和电化学性能具有至关重要的影响。特别是,LNMO 中晶体表面的氧化学计量与晶体内部的氧化学计量不同。LNMO 中局部氧损失的检测及其与 LNMO 晶体结构和循环稳定性的相关性仍然具有挑战性。本研究综合研究了烧结温度控制的LNMO中的氧缺陷对LNMO表面晶体结构和电化学性能的影响。高浓度的氧空位在 LNMO 的表面区域偏析,形成薄的岩盐和/或缺陷的尖晶石表面层。通过环形暗场和环形明场技术演示了原子级表面结构重建。对于LNMO的合成,较高的烧结温度导致较高的结晶度,但LNMO中的氧缺陷较高。LNMO的高结晶度会提高LNMO正极的热稳定性,而高缺氧含量会降低LNMO的表面结构稳定性。因此,在中温850℃下烧结的LNMO获得了最佳的容量保持率。结果表明,氧化学计量和 LNMO 结晶度之间对 LNMO 循环性能的影响存在竞争作用机制。
更新日期:2023-03-20
中文翻译:

通过调节表面缺氧增强LiNi0.5Mn1.5O4的可逆性
缺氧对尖晶石氧化物锂电极材料如LiNi 0.5 Mn 1.5 O 4 (LNMO)正极的晶体结构和电化学性能具有至关重要的影响。特别是,LNMO 中晶体表面的氧化学计量与晶体内部的氧化学计量不同。LNMO 中局部氧损失的检测及其与 LNMO 晶体结构和循环稳定性的相关性仍然具有挑战性。本研究综合研究了烧结温度控制的LNMO中的氧缺陷对LNMO表面晶体结构和电化学性能的影响。高浓度的氧空位在 LNMO 的表面区域偏析,形成薄的岩盐和/或缺陷的尖晶石表面层。通过环形暗场和环形明场技术演示了原子级表面结构重建。对于LNMO的合成,较高的烧结温度导致较高的结晶度,但LNMO中的氧缺陷较高。LNMO的高结晶度会提高LNMO正极的热稳定性,而高缺氧含量会降低LNMO的表面结构稳定性。因此,在中温850℃下烧结的LNMO获得了最佳的容量保持率。结果表明,氧化学计量和 LNMO 结晶度之间对 LNMO 循环性能的影响存在竞争作用机制。