当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Asymmetrically Coordinated CoB1N3 Moieties for Selective Generation of High-Valence Co-Oxo Species via Coupled Electron–Proton Transfer in Fenton-like Reactions
Advanced Materials ( IF 27.4 ) Pub Date : 2023-03-17 , DOI: 10.1002/adma.202209552 Junsheng Song 1 , Nannan Hou 1 , Xiaocheng Liu 1 , Markus Antonietti 2 , Pengjun Zhang 3 , Rongrong Ding 1 , Li Song 3 , Yang Wang 2 , Yang Mu 1
Advanced Materials ( IF 27.4 ) Pub Date : 2023-03-17 , DOI: 10.1002/adma.202209552 Junsheng Song 1 , Nannan Hou 1 , Xiaocheng Liu 1 , Markus Antonietti 2 , Pengjun Zhang 3 , Rongrong Ding 1 , Li Song 3 , Yang Wang 2 , Yang Mu 1
Affiliation
High-valence metal species generated in peroxymonosulfate (PMS)-based Fenton-like processes are promising candidates for selective degradation of contaminants in water, the formation of which necessitates the cleavage of OH and OO bonds as well as efficient electron transfer. However, the high dissociation energy of OH bond makes its cleavage quite challenging, largely hampering the selective generation of reactive oxygen species. Herein, an asymmetrical configuration characterized by a single cobalt atom coordinated with boron and nitrogen (CoB1N3) is established to offer a strong local electric field, upon which the cleavage of OH bond is thermodynamically favored via a promoted coupled electron–proton transfer process, which serves an essential step to further allow OO bond cleavage and efficient electron transfer. Accordingly, the selective formation of Co(IV)O in a single-atom Co/PMS system enables highly efficient removal performance toward various organic pollutants. The proposed strategy also holds true in other heteroatom doping systems to configure asymmetric coordination, thus paving alternative pathways for specific reactive species conversion by rationalized design of catalysts at atomic level toward environmental applications and more.
中文翻译:
不对称配位的 CoB1N3 部分用于通过 Fenton 样反应中的耦合电子-质子转移选择性生成高价 Co-Oxo 物种
基于过氧单硫酸盐 (PMS) 的类芬顿过程中产生的高价金属物种是选择性降解水中污染物的有前途的候选者,其形成需要 O H 和 O O 键的裂解以及有效的电子转移. 然而, OH键的高解离能使其裂解非常具有挑战性,在很大程度上阻碍了活性氧的选择性产生。在此,建立了以单个钴原子与硼和氮配位 (CoB 1 N 3 ) 为特征的不对称构型,以提供强大的局部电场,O 的裂解H 键通过促进耦合的电子-质子转移过程在热力学上受到青睐,这是进一步允许 O O键断裂和有效电子转移的重要步骤。因此,在单原子 Co/PMS 系统中选择性形成 Co(IV)O 可实现对各种有机污染物的高效去除性能。所提出的策略也适用于其他杂原子掺杂系统以配置不对称配位,从而通过在原子水平上合理设计催化剂以实现环境应用等,为特定活性物质转化铺平了替代途径。
更新日期:2023-03-17
中文翻译:
不对称配位的 CoB1N3 部分用于通过 Fenton 样反应中的耦合电子-质子转移选择性生成高价 Co-Oxo 物种
基于过氧单硫酸盐 (PMS) 的类芬顿过程中产生的高价金属物种是选择性降解水中污染物的有前途的候选者,其形成需要 O H 和 O O 键的裂解以及有效的电子转移. 然而, OH键的高解离能使其裂解非常具有挑战性,在很大程度上阻碍了活性氧的选择性产生。在此,建立了以单个钴原子与硼和氮配位 (CoB 1 N 3 ) 为特征的不对称构型,以提供强大的局部电场,O 的裂解H 键通过促进耦合的电子-质子转移过程在热力学上受到青睐,这是进一步允许 O O键断裂和有效电子转移的重要步骤。因此,在单原子 Co/PMS 系统中选择性形成 Co(IV)O 可实现对各种有机污染物的高效去除性能。所提出的策略也适用于其他杂原子掺杂系统以配置不对称配位,从而通过在原子水平上合理设计催化剂以实现环境应用等,为特定活性物质转化铺平了替代途径。