Colloids and Surfaces A: Physicochemical and Engineering Aspects ( IF 4.9 ) Pub Date : 2023-03-17 , DOI: 10.1016/j.colsurfa.2023.131287 Giovana Colucci , Arantzazu Santamaria-Echart , Samara C. Silva , Liandra G. Teixeira , Andreia Ribeiro , Alírio E. Rodrigues , M. Filomena Barreiro
Colloidal lignin particles (CLPs) have increased interest as green and sustainable materials for Pickering stabilizers, with particle design being an important step towards their effective use. In this context, the antisolvent precipitation method was selected to conduct a study aiming at understanding the effect of process variables (initial lignin concentration, antisolvent pH, final ethanol concentration, and antisolvent addition rate) on particle size, zeta potential, color parameters, and contact angle. Moreover, their Pickering stabilizing potential was preliminarily screened. The evaluation using a Fractional Factorial Design revealed that the particle size is significantly influenced by the initial lignin concentration (as it increases, larger particles are obtained) and the final ethanol concentration (as it increases, smaller sizes result). The zeta potential is significantly affected by the antisolvent pH and the initial lignin concentration; the increase in both parameters results in higher negative values. The color is significantly dependent on the used initial lignin concentration (as it increases, particles become lighter and the yellowish accentuates) and the antisolvent pH (as it increases, particles become darker). Both initial lignin concentration and final ethanol concentration increase promote hydrophobicity, whereas increasing the antisolvent pH and its addition rate turns particles more hydrophilic. Through this strategy, it was possible to achieve CLPs with promising Pickering stabilizing potential, putting in evidence the importance of understanding the production process to design effective particles for target applications.
中文翻译:
通过颗粒设计策略开发胶体木质素颗粒并筛选其皮克林稳定潜力
胶体木质素颗粒 (CLP) 作为皮克林稳定剂的绿色和可持续材料越来越受到关注,颗粒设计是实现其有效使用的重要一步。在此背景下,选择反溶剂沉淀法进行研究,旨在了解工艺变量(初始木质素浓度、反溶剂 pH 值、最终乙醇浓度和反溶剂添加速率)对粒径、zeta 电位、颜色参数和和的影响。接触角。此外,初步筛选了它们的皮克林稳定潜力。使用部分析因设计的评估表明,粒径受初始木质素浓度(随着它增加,获得更大的颗粒)和最终乙醇浓度(随着它增加,结果更小)。Zeta 电位受反溶剂 pH 值和初始木质素浓度的显着影响;两个参数的增加导致更高的负值。颜色在很大程度上取决于所用的初始木质素浓度(随着它的增加,颗粒变得更浅,黄色更加突出)和反溶剂 pH 值(随着它的增加,颗粒变得更暗)。初始木质素浓度和最终乙醇浓度的增加都会促进疏水性,而增加反溶剂的 pH 值及其添加速率会使颗粒更加亲水。通过这一策略,有可能获得具有良好皮克林稳定潜力的 CLP,证明了解生产过程对于为目标应用设计有效颗粒的重要性。Zeta 电位受反溶剂 pH 值和初始木质素浓度的显着影响;两个参数的增加导致更高的负值。颜色在很大程度上取决于所用的初始木质素浓度(随着它的增加,颗粒变得更浅,黄色更加突出)和反溶剂 pH 值(随着它的增加,颗粒变得更暗)。初始木质素浓度和最终乙醇浓度的增加都会促进疏水性,而增加反溶剂的 pH 值及其添加速率会使颗粒更加亲水。通过这一策略,有可能获得具有良好皮克林稳定潜力的 CLP,证明了解生产过程对于为目标应用设计有效颗粒的重要性。Zeta 电位受反溶剂 pH 值和初始木质素浓度的显着影响;两个参数的增加导致更高的负值。颜色在很大程度上取决于所用的初始木质素浓度(随着它的增加,颗粒变得更浅,黄色更加突出)和反溶剂 pH 值(随着它的增加,颗粒变得更暗)。初始木质素浓度和最终乙醇浓度的增加都会促进疏水性,而增加反溶剂的 pH 值及其添加速率会使颗粒更加亲水。通过这一策略,有可能获得具有良好皮克林稳定潜力的 CLP,证明了解生产过程对于为目标应用设计有效颗粒的重要性。