当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phytic acid empowered two nanos “Polypyrrole tunnels and transition Metal-(Oxy)hydroxide Sheets” in a single platform for unmitigated redox water splitting
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-03-16 , DOI: 10.1016/j.cej.2023.142280
Prakash Chandra Lohani , Arjun Prasad Tiwari , Alagan Muthurasu , Ishwor Pathak , Milan Babu Poudel , Kisan Chhetri , Bipeen Dahal , Debendra Acharya , Tae Hoon Ko , Hak Yong Kim

Transition metal oxyhydroxide electrocatalysts, which have immense potential of overall water splitting, help to relieve energy scarcity. Herein, we describe a novel perspective for designing transition metal oxyhydroxide bifunctional electrocatalysts by fabricating green and renewable biological phytic acid-incorporated polypyrrole nanotunnels with luminal-abluminal NiCo-(oxy)hydroxide nanosheets fastened on both sides of a carbon cloth (NiCo-OHO@PA-PPy-NTs@CC (1:1)). Polypyrrole tunnels with delocalizing π-electrons contribute not only as a high mass loading facility but also leverage the rapid electron/charge transportation, sidestepping the fast phase changes of metallic oxyhydroxide during the electrolysis of water. Six phosphate groups of phytic acid cross-link the metal ions, confining their migration and aggregation, leading to the homogeneous dispersion of metal ions which provides more active sites for the evolution of H2 and O2. Additionally, phytic acid-incorporated PPy networks enhance the hydrophilicity of the surface, boosting effective contact between the catalyst and electrolytes, which escalates to excellent electrode kinetics for the HER and OER. The bifunctional electrocatalyst required an ultralow cell voltage of 1.51 V to achieve a current density of 10 mA cm−2 with 100% Faradaic efficiency, signifying its potential for practical overall water splitting as a replacement for noble metal catalysts.



中文翻译:

植酸在单一平台中赋予两个纳米“聚吡咯隧道和过渡金属-(氧)氢氧化物片”以实现完全氧化还原水分解

过渡金属羟基氧化物电催化剂具有巨大的整体水分解潜力,有助于缓解能源短缺。在此,我们描述了一种设计过渡金属羟基氧化物双功能电催化剂的新视角,即通过在碳布(NiCo-OHO@)两侧固定管腔-非管腔 NiCo-(oxy)hydroxide 纳米片来制造绿色和可再生生物植酸掺入聚吡咯纳米隧道。 PA-PPy-NTs@CC (1:1))。具有离域 π 电子的聚吡咯隧道不仅有助于作为高质量负载设施,而且还利用快速电子/电荷传输,回避水电解过程中金属羟基氧化物的快速相变。植酸的六个磷酸基团交联金属离子,限制它们的迁移和聚集,2和氧2。此外,掺入植酸的 PPy 网络增强了表面的亲水性,促进了催化剂和电解质之间的有效接触,从而为 HER 和 OER 提供了出色的电极动力学。双功能电催化剂需要 1.51 V 的超低电池电压才能实现 10 mA cm -2的电流密度和 100% 的法拉第效率,这表明其作为贵金属催化剂替代品的实际全水分解潜力。

更新日期:2023-03-17
down
wechat
bug