当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Vertical Array of Graphite Oxide Liquid Crystal by Microwire Shearing for Highly Thermally Conductive Composites
Advanced Materials ( IF 27.4 ) Pub Date : 2023-03-17 , DOI: 10.1002/adma.202300077 Min Cao 1 , Zheng Li 1, 2 , Jiahao Lu 1 , Bo Wang 3 , Haiwen Lai 3 , Zeshen Li 1 , Yue Gao 1 , Xin Ming 1 , Shiyu Luo 1 , Li Peng 1 , Zhen Xu 1 , Senping Liu 1 , Yingjun Liu 1, 4 , Chao Gao 1
Advanced Materials ( IF 27.4 ) Pub Date : 2023-03-17 , DOI: 10.1002/adma.202300077 Min Cao 1 , Zheng Li 1, 2 , Jiahao Lu 1 , Bo Wang 3 , Haiwen Lai 3 , Zeshen Li 1 , Yue Gao 1 , Xin Ming 1 , Shiyu Luo 1 , Li Peng 1 , Zhen Xu 1 , Senping Liu 1 , Yingjun Liu 1, 4 , Chao Gao 1
Affiliation
Excellent through-plane thermally conductive composites are highly demanded for efficient heat dissipation. Giant sheets have large crystalline domain and significantly reduce interface phonon scattering, making them promising to build highly thermally conductive composites. However, realizing vertical orientation of giant sheets remains challenging due to their enormous mass and huge hydrodynamic drag force. Here, we achieve highly vertically ordered liquid crystals of giant graphite oxide (more than 100 µm in lateral dimension) by microwire shearing, which endows the composite with a recorded through-plane thermal conductivity of 94 W m−1 K−1. Microscale shearing fields induced by vertical motion of microwires conquer huge hydrodynamic energy barrier and vertically reorient giant sheets. The resulting liquid crystals exhibit extremely retarded relaxation and impart large-scale vertical array with bidirectional ordering degree as high as 0.82. The graphite array-based composites demonstrate an ultrahigh thermal enhancement efficiency of over 35 times per unit volume. Furthermore, the composites improve cooling efficiency by 93% for thermal management tests compared to commercial thermal interface materials. This work offers a novel methodology to precisely manipulate the orientation of giant particles and promote large-scale fabrication of vertical array with advanced functionalities.
中文翻译:
用于高导热复合材料的微线剪切垂直阵列氧化石墨液晶
高效散热需要优异的平面导热复合材料。巨大的片材具有大的晶畴并显着降低界面声子散射,使其有望构建高导热复合材料。然而,由于巨大的质量和巨大的流体动力阻力,实现巨型板材的垂直方向仍然具有挑战性。在这里,我们通过微线剪切实现了巨型氧化石墨(横向尺寸超过 100 µm)的高度垂直有序液晶,这赋予了复合材料记录的 94 W m −1 K −1的贯穿平面热导率. 由微丝的垂直运动引起的微尺度剪切场克服了巨大的流体动力能垒并垂直重新定向了巨大的片材。所得液晶表现出极度延迟的弛豫并赋予双向有序度高达 0.82 的大规模垂直阵列。基于石墨阵列的复合材料表现出每单位体积超过 35 倍的超高热增强效率。此外,与商业热界面材料相比,复合材料在热管理测试中的冷却效率提高了 93%。这项工作提供了一种新的方法来精确操纵巨型粒子的方向,并促进具有先进功能的垂直阵列的大规模制造。
更新日期:2023-03-17
中文翻译:
用于高导热复合材料的微线剪切垂直阵列氧化石墨液晶
高效散热需要优异的平面导热复合材料。巨大的片材具有大的晶畴并显着降低界面声子散射,使其有望构建高导热复合材料。然而,由于巨大的质量和巨大的流体动力阻力,实现巨型板材的垂直方向仍然具有挑战性。在这里,我们通过微线剪切实现了巨型氧化石墨(横向尺寸超过 100 µm)的高度垂直有序液晶,这赋予了复合材料记录的 94 W m −1 K −1的贯穿平面热导率. 由微丝的垂直运动引起的微尺度剪切场克服了巨大的流体动力能垒并垂直重新定向了巨大的片材。所得液晶表现出极度延迟的弛豫并赋予双向有序度高达 0.82 的大规模垂直阵列。基于石墨阵列的复合材料表现出每单位体积超过 35 倍的超高热增强效率。此外,与商业热界面材料相比,复合材料在热管理测试中的冷却效率提高了 93%。这项工作提供了一种新的方法来精确操纵巨型粒子的方向,并促进具有先进功能的垂直阵列的大规模制造。