当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bio-Inspired Differential Capillary Migration of Aqueous Liquid Metal Ink for Rapid Fabrication of High-Precision Monolayer and Multilayer Circuits
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-03-17 , DOI: 10.1002/adfm.202215050
Mingkuan Zhang 1, 2 , Jiahao Gong 3 , Hao Chang 4, 5 , Xinlong Sun 6 , Pan Zhang 4, 5 , Junheng Fu 7 , Li Liu 4, 5 , Xiaoying Li 4, 5 , Yushu Wang 4, 5 , Wei Rao 4, 5, 8
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-03-17 , DOI: 10.1002/adfm.202215050
Mingkuan Zhang 1, 2 , Jiahao Gong 3 , Hao Chang 4, 5 , Xinlong Sun 6 , Pan Zhang 4, 5 , Junheng Fu 7 , Li Liu 4, 5 , Xiaoying Li 4, 5 , Yushu Wang 4, 5 , Wei Rao 4, 5, 8
Affiliation
![]() |
Manipulating liquid metal inks to create conductive microstructures has attracted widespread interest as liquid metal microstructures are turning into influential components in flexible electronics. However, it is challenging to prevent the issues with low precision, low efficiency, and residue caused by sedimentation, free diffusion, and the Marangoni effect. Inspired by the water transport in plants, the wetting-induced assembly method based on the differential capillary effect for liquid metal ink is created to realize the facile and rapid manufacture of liquid metal conductive microstructures. The single-micron accuracy circuits with a minimum of ≈4 µm straight lines are fabricated to a centimeter scale. This method can also be extended to the preparation of multilayer circuits (minimum 5 µm through hole). The resulting entirely flexible stretchable circuits make it possible to construct highly stretchable devices, such as flexible transparent conductors and stretching sensors. Transparent conductors exhibit excellent mechanical (maximum ≈750% tensile rupture limit) and optoelectronic properties (the transmittance reaches ≈87% and the sheet resistance is ≈0.5 Ω/□)|making them suitable for optically-clear electromagnetic shielding. This study offers a fresh and plain approach to solving the assembly problem of liquid metal inks, paving the way for the creation of flexible electronic devices
中文翻译:
用于快速制造高精度单层和多层电路的水性液态金属墨水的仿生微分毛细管迁移
随着液态金属微结构正在转变为柔性电子产品中有影响力的组件,操纵液态金属墨水来创建导电微结构引起了广泛的兴趣。然而,如何防止由于沉积、自由扩散和马兰戈尼效应导致的精度低、效率低和残留等问题具有挑战性。受植物水分传输的启发,提出了基于液态金属墨水微分毛细管效应的润湿诱导组装方法,实现了液态金属导电微结构的简便快速制造。具有最小 ≈4 µm 直线的单微米精度电路被制造到厘米级。这种方法也可以扩展到多层电路的制备(最小 5 µm 通孔)。由此产生的完全柔性可拉伸电路使构建高度可拉伸设备成为可能,例如柔性透明导体和拉伸传感器。透明导体表现出优异的机械性能(最大拉伸断裂极限≈750%)和光电性能(透光率达到≈87%,薄层电阻≈0.5 Ω/□)|使其适用于光学透明的电磁屏蔽。这项研究为解决液态金属墨水的组装问题提供了一种新鲜而简单的方法,为柔性电子设备的创建铺平了道路 透明导体表现出优异的机械性能(最大拉伸断裂极限≈750%)和光电性能(透光率达到≈87%,薄层电阻≈0.5 Ω/□)|使其适用于光学透明的电磁屏蔽。这项研究为解决液态金属墨水的组装问题提供了一种新鲜而简单的方法,为柔性电子设备的创建铺平了道路 透明导体表现出优异的机械性能(最大拉伸断裂极限≈750%)和光电性能(透光率达到≈87%,薄层电阻≈0.5 Ω/□)|使其适用于光学透明的电磁屏蔽。这项研究为解决液态金属墨水的组装问题提供了一种新鲜而简单的方法,为柔性电子设备的创建铺平了道路
更新日期:2023-03-17
中文翻译:

用于快速制造高精度单层和多层电路的水性液态金属墨水的仿生微分毛细管迁移
随着液态金属微结构正在转变为柔性电子产品中有影响力的组件,操纵液态金属墨水来创建导电微结构引起了广泛的兴趣。然而,如何防止由于沉积、自由扩散和马兰戈尼效应导致的精度低、效率低和残留等问题具有挑战性。受植物水分传输的启发,提出了基于液态金属墨水微分毛细管效应的润湿诱导组装方法,实现了液态金属导电微结构的简便快速制造。具有最小 ≈4 µm 直线的单微米精度电路被制造到厘米级。这种方法也可以扩展到多层电路的制备(最小 5 µm 通孔)。由此产生的完全柔性可拉伸电路使构建高度可拉伸设备成为可能,例如柔性透明导体和拉伸传感器。透明导体表现出优异的机械性能(最大拉伸断裂极限≈750%)和光电性能(透光率达到≈87%,薄层电阻≈0.5 Ω/□)|使其适用于光学透明的电磁屏蔽。这项研究为解决液态金属墨水的组装问题提供了一种新鲜而简单的方法,为柔性电子设备的创建铺平了道路 透明导体表现出优异的机械性能(最大拉伸断裂极限≈750%)和光电性能(透光率达到≈87%,薄层电阻≈0.5 Ω/□)|使其适用于光学透明的电磁屏蔽。这项研究为解决液态金属墨水的组装问题提供了一种新鲜而简单的方法,为柔性电子设备的创建铺平了道路 透明导体表现出优异的机械性能(最大拉伸断裂极限≈750%)和光电性能(透光率达到≈87%,薄层电阻≈0.5 Ω/□)|使其适用于光学透明的电磁屏蔽。这项研究为解决液态金属墨水的组装问题提供了一种新鲜而简单的方法,为柔性电子设备的创建铺平了道路