当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enabling Superior Cycling Stability of LiNi0.9Co0.05Mn0.05O2 with Controllable Internal Strain
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-03-16 , DOI: 10.1002/adfm.202215123
Zhouliang Tan 1, 2 , Xiaoxuan Chen 3 , Yunjiao Li 1, 2 , Xiaoming Xi 4 , Shuaipeng Hao 1, 2 , Xiaohui Li 1, 2 , Xingjie Shen 1, 2 , Zhenjiang He 1, 2 , Wengao Zhao 5 , Yong Yang 3
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-03-16 , DOI: 10.1002/adfm.202215123
Zhouliang Tan 1, 2 , Xiaoxuan Chen 3 , Yunjiao Li 1, 2 , Xiaoming Xi 4 , Shuaipeng Hao 1, 2 , Xiaohui Li 1, 2 , Xingjie Shen 1, 2 , Zhenjiang He 1, 2 , Wengao Zhao 5 , Yong Yang 3
Affiliation
![]() |
Intergranular cracking of Ni-rich layered LiNi1-x-yCoxMnyO2 (1-x-y ≥ 0.8) cathode particles deteriorate the chemo–electro–mechanical stability of high-energy lithium-ion batteries (LIBs), thus presenting a challenge to typical modification methods to establish robust structures with highly efficient lithium-ion storage. Herein, the ZrTiO4 (ZTO) as an epitaxial layer to enhance mechanical stability of ultrahigh-Ni LiNi0.9Co0.05Mn0.05O2 (NCM90) is reported for the first time. Intensive exploration from structure characterizations (X-ray absorption spectroscopy and in situ X-ray diffraction techniques), multi-physics field analysis, and first-principles calculations disclose that the conformal ZTO layers and Zr doping effectively suppresses the internal strain and the release of lattice oxygen, which prodigiously restrains the local stress accumulation during whole (de)lithiation processes, thereby maintaining good mechanical stability of the materials. Meanwhile, the protective ZTO layer also prevents electrolyte erosion, thus keeping an intact surface structure of NCM90. Notably, ZTO-modified NCM90 achieves significantly improved cyclability under high-voltage (4.5 V) operation, expressing a 17% increase in capacity retention (71% vs 88%) after 100 cycles. Overall, this work reveals the role of internal strain in the original degradation behavior and effectiveness of surface engineering strategy to solve the challenge, emphasizing that the conformal surface protection mitigates the internal stress of Ni-rich NCM by anchoring the lattice oxygen.
中文翻译:
使内部应变可控的 LiNi0.9Co0.05Mn0.05O2 具有出色的循环稳定性
富镍层状 LiNi 1-xy Co x Mn y O 2 (1-xy ≥ 0.8) 阴极颗粒的晶间开裂会降低高能锂离子电池 (LIB) 的化学-机电稳定性,从而带来挑战到典型的修改方法,以建立具有高效锂离子存储的坚固结构。在此,ZrTiO 4 (ZTO)作为外延层以增强超高Ni LiNi 0.9 Co 0.05 Mn 0.05 O 2的机械稳定性(NCM90) 为首次报道。从结构表征(X 射线吸收光谱和原位 X 射线衍射技术)、多物理场分析和第一性原理计算的深入探索表明,共形 ZTO 层和 Zr 掺杂有效地抑制了内部应变和释放晶格氧,它极大地抑制了整个(脱)锂化过程中的局部应力积累,从而保持了材料良好的机械稳定性。同时,保护性 ZTO 层还可以防止电解液侵蚀,从而保持 NCM90 表面结构完整。值得注意的是,ZTO 改性的 NCM90 在高压 (4.5 V) 操作下实现了显着改善的循环性能,在 100 次循环后容量保持率提高了 17%(71% 对 88%)。全面的,
更新日期:2023-03-16
中文翻译:

使内部应变可控的 LiNi0.9Co0.05Mn0.05O2 具有出色的循环稳定性
富镍层状 LiNi 1-xy Co x Mn y O 2 (1-xy ≥ 0.8) 阴极颗粒的晶间开裂会降低高能锂离子电池 (LIB) 的化学-机电稳定性,从而带来挑战到典型的修改方法,以建立具有高效锂离子存储的坚固结构。在此,ZrTiO 4 (ZTO)作为外延层以增强超高Ni LiNi 0.9 Co 0.05 Mn 0.05 O 2的机械稳定性(NCM90) 为首次报道。从结构表征(X 射线吸收光谱和原位 X 射线衍射技术)、多物理场分析和第一性原理计算的深入探索表明,共形 ZTO 层和 Zr 掺杂有效地抑制了内部应变和释放晶格氧,它极大地抑制了整个(脱)锂化过程中的局部应力积累,从而保持了材料良好的机械稳定性。同时,保护性 ZTO 层还可以防止电解液侵蚀,从而保持 NCM90 表面结构完整。值得注意的是,ZTO 改性的 NCM90 在高压 (4.5 V) 操作下实现了显着改善的循环性能,在 100 次循环后容量保持率提高了 17%(71% 对 88%)。全面的,