当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Surface Defect Engineering in Colored TiO2 Hollow Spheres Toward Efficient Photocatalysis
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-03-15 , DOI: 10.1002/adfm.202212486
Letizia Liccardo 1 , Matteo Bordin 1 , Polina M. Sheverdyaeva 2 , Matteo Belli 3 , Paolo Moras 2 , Alberto Vomiero 1, 4 , Elisa Moretti 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2023-03-15 , DOI: 10.1002/adfm.202212486
Letizia Liccardo 1 , Matteo Bordin 1 , Polina M. Sheverdyaeva 2 , Matteo Belli 3 , Paolo Moras 2 , Alberto Vomiero 1, 4 , Elisa Moretti 1
Affiliation
![]() |
Nanostructured TiO2 is one of the best materials for photocatalysis, thanks to its high surface area and surface reactivity, but its large energy bandgap (3.2 eV) hinders the use of the entire solar spectrum. Here, it is proposed that defect-engineered nanostructured TiO2 photocatalysts are obtained by hydrogenation strategy to extend its light absorption up to the near-infrared region. It is demonstrated that hydrogenated or colored TiO2 hollow spheres (THS) composed of hierarchically assembled nanoparticles result in much broader exploitation of the solar spectrum (up to 1200 nm) and the engineered surface enhances the photogeneration of charges for photocatalytic processes. In turn, when applied for photodegradation of a targeted drug (Ciprofloxacin) this results in 82% degradation after 6 h under simulated sunlight. Valence band analysis by photoelectron spectroscopy revealed the presence of oxygen vacancies, whose surface density increases with the hydrogenation rate. Thus, a tight correlation between degree of hydrogenation and photocatalytic activity is directly established. Further insight comes from electron paramagnetic resonance, which evidences bulk Ti3+ centers only in hydrogenated THS. The results are anticipated to disclose a new path toward highly efficient photocatalytic titania in a series of applications targeting water remediation and solar fuel production.
中文翻译:
彩色 TiO2 空心球表面缺陷工程实现高效光催化
纳米结构的 TiO 2是用于光催化的最佳材料之一,这得益于其高表面积和表面反应性,但其较大的能带隙 (3.2 eV) 阻碍了整个太阳光谱的使用。在这里,建议通过氢化策略获得缺陷工程纳米结构 TiO 2光催化剂,以将其光吸收扩展到近红外区域。结果表明,氢化或着色的 TiO 2由分层组装的纳米粒子组成的空心球 (THS) 可以更广泛地利用太阳光谱(高达 1200 nm),并且工程表面增强了光催化过程中电荷的光生作用。反过来,当应用于靶向药物(环丙沙星)的光降解时,这会导致在模拟阳光下 6 小时后降解 82%。光电子能谱的价带分析揭示了氧空位的存在,其表面密度随着氢化率的增加而增加。因此,直接建立了氢化程度与光催化活性之间的紧密相关性。进一步的见解来自电子顺磁共振,它证明了块体 Ti 3+仅以氢化 THS 为中心。预计结果将在一系列针对水修复和太阳能燃料生产的应用中揭示通往高效光催化二氧化钛的新途径。
更新日期:2023-03-15
中文翻译:

彩色 TiO2 空心球表面缺陷工程实现高效光催化
纳米结构的 TiO 2是用于光催化的最佳材料之一,这得益于其高表面积和表面反应性,但其较大的能带隙 (3.2 eV) 阻碍了整个太阳光谱的使用。在这里,建议通过氢化策略获得缺陷工程纳米结构 TiO 2光催化剂,以将其光吸收扩展到近红外区域。结果表明,氢化或着色的 TiO 2由分层组装的纳米粒子组成的空心球 (THS) 可以更广泛地利用太阳光谱(高达 1200 nm),并且工程表面增强了光催化过程中电荷的光生作用。反过来,当应用于靶向药物(环丙沙星)的光降解时,这会导致在模拟阳光下 6 小时后降解 82%。光电子能谱的价带分析揭示了氧空位的存在,其表面密度随着氢化率的增加而增加。因此,直接建立了氢化程度与光催化活性之间的紧密相关性。进一步的见解来自电子顺磁共振,它证明了块体 Ti 3+仅以氢化 THS 为中心。预计结果将在一系列针对水修复和太阳能燃料生产的应用中揭示通往高效光催化二氧化钛的新途径。