当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Subnanometer-Wide Indium Selenide Nanoribbons
ACS Nano ( IF 15.8 ) Pub Date : 2023-03-14 , DOI: 10.1021/acsnano.3c00670
William J Cull 1 , Stephen T Skowron 1 , Ruth Hayter 1 , Craig T Stoppiello 2 , Graham A Rance 2 , Johannes Biskupek 3 , Zakhar R Kudrynskyi 4, 5 , Zakhar D Kovalyuk 6 , Christopher S Allen 7 , Thomas J A Slater 7 , Ute Kaiser 3 , Amalia Patanè 4 , Andrei N Khlobystov 1, 2
Affiliation  

Indium selenides (InxSey) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In this work we synthesize single-layer, ultrathin, subnanometer-wide InxSey by templated growth inside single-walled carbon nanotubes (SWCNTs). Despite the complex polymorphism of InxSey we show that the phase of the encapsulated material can be identified through comparison of experimental aberration-corrected transmission electron microscopy (AC-TEM) images and AC-TEM simulations of known structures of InxSey. We show that, by altering synthesis conditions, one of two different stoichiometries of sub-nm InxSey, namely InSe or β-In2Se3, can be prepared. Additionally, in situ AC-TEM heating experiments reveal that encapsulated β-In2Se3 undergoes a phase change to γ-In2Se3 above 400 °C. Further analysis of the encapsulated species is performed using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), and Raman spectroscopy, corroborating the identities of the encapsulated species. These materials could provide a platform for ultrathin, subnanometer-wide phase-change nanoribbons with applications as nanoelectronic components.

中文翻译:

亚纳米级硒化铟纳米带

硒化铟 (In x Se y ) 已被证明保留了几个理想的特性,例如铁电性、通过温度控制相变的可调谐光致发光,以及当限制在二维 (2D) 时的高电子迁移率。在这项工作中,我们通过在单壁碳纳米管 (SWCNT) 内进行模板化生长,合成了单层、超薄、亚纳米宽的 In x Se y 。尽管 In x Se y的复杂多态性,我们表明封装材料的相可以通过比较实验像差校正透射电子显微镜 (AC-TEM) 图像和 In x Se 已知结构的 AC-TEM 模拟识别是的。我们表明,通过改变合成条件,可以制备亚纳米 In x Se y的两种不同化学计量之一,即 InSe 或 β-In 2 Se 3 。此外,原位AC-TEM 加热实验表明,封装的 β-In 2 Se 3会发生相变,变成 γ-In 2 Se 3高于 400 °C。使用 X 射线光电子能谱 (XPS)、热重分析 (TGA)、能量色散 X 射线分析 (EDX) 和拉曼光谱对封装物质进行进一步分析,证实封装物质的身份。这些材料可以为超薄、亚纳米宽的相变纳米带提供平台,并将其用作纳米电子元件。
更新日期:2023-03-14
down
wechat
bug