Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-03-10 , DOI: 10.1016/j.cej.2023.142310 Guoqiang Shu , Yaqi Lin , Rui Zhong , Xiaofan Su , Shanhong Guo , Chao Wang , Changan Zhou , Lei Song , Li Xie , Kui Ma , Hairong Yue
Sono-photodynamic antibacterial therapy (SPDAT) is considered to be one of the most effective biomedical treatments, offering both practical flexibility and excellent performance. However, sono-photosensitizers with good biocompatibility, low cytotoxicity, and high antibacterial efficiency under harsh conditions are lacking nowadays. This paper presented attractive Ag NWs@BaTiO3 core–shell composites, which integrates three elements of piezoelectric effect, twin crystals, and heterojunction to engineer triple internal electric fields. Continuous co-disturbances induced by ultrasound and light disrupted the electrostatic balance and saturation effects of the triple internal electric field on composites, thereby regulating its own electrical properties and increasing its affinity and adhesion to bacterial cells through electrostatic attraction. Remarkably, the antibacterial efficiency of Ag NWs@BaTiO3 against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) reached 92.5% within 60 min and ∼ 100% within 30 min under low-power visible light irradiation and ultrasonic vibration, respectively. Moreover, the composites also exhibited good biocompatibility and low cytotoxicity. Intrinsically, the constructed triple internal electric fields could effectively extend the charges transfer pathway, accelerating the spatial separation of excited-charges pairs and thereby producing sufficient reactive oxygen species (ROSs) to boost the synergistic piezo-photocatalysis activity. Finally, we proposed a combined piezo-photocatalysis mechanism of energy band bending theory and screening charge effect under triple internal electric fields.
中文翻译:
在 Ag NWs@BaTiO3 复合材料中设计三重内部电场以实现超声波-可见光驱动的抗菌活性
声光动力抗菌疗法 (SPDAT) 被认为是最有效的生物医学疗法之一,具有实用的灵活性和出色的性能。然而,目前缺乏生物相容性好、细胞毒性低、在恶劣条件下抗菌效率高的声光敏剂。本文介绍了具有吸引力的 Ag NWs@BaTiO 3核壳复合材料,它集成了压电效应、孪晶和异质结三个要素来设计三重内部电场。超声和光诱导的连续共扰动破坏了三重内电场对复合材料的静电平衡和饱和效应,从而调节其自身的电性能,并通过静电吸引增加其对细菌细胞的亲和力和粘附力。值得注意的是,Ag NWs@BaTiO 3对金黄色葡萄球菌(S. aureus)和大肠杆菌(E. coli)的抗菌效率) 在低功率可见光照射和超声波振动下,分别在 60 分钟内达到 92.5%,在 30 分钟内达到 ~ 100%。此外,复合材料还表现出良好的生物相容性和低细胞毒性。从本质上讲,所构建的三重内部电场可以有效地延长电荷转移途径,加速激发电荷对的空间分离,从而产生足够的活性氧(ROS)以促进协同压电光催化活性。最后,我们提出了三重内电场下能带弯曲理论和屏蔽电荷效应的组合压电光催化机理。