当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation
Nature Communications ( IF 14.7 ) Pub Date : 2023-03-14 , DOI: 10.1038/s41467-023-37008-8
Yi Wang 1, 2, 3 , Rong Yang 1, 2, 4 , Yajun Ding 1, 2 , Bo Zhang 5 , Hao Li 6, 7 , Bing Bai 1, 2, 3 , Mingrun Li 1, 2 , Yi Cui 6, 7 , Jianping Xiao 1, 2 , Zhong-Shuai Wu 1, 2
Affiliation  

Exploring durable electrocatalysts with high activity for oxygen evolution reaction (OER) in acidic media is of paramount importance for H2 production via polymer electrolyte membrane electrolyzers, yet it remains urgently challenging. Herein, we report a synergistic strategy of Rh doping and surface oxygen vacancies to precisely regulate unconventional OER reaction path via the Ru–O–Rh active sites of Rh-RuO2, simultaneously boosting intrinsic activity and stability. The stabilized low-valent catalyst exhibits a remarkable performance, with an overpotential of 161 mV at 10 mA cm−2 and activity retention of 99.2% exceeding 700 h at 50 mA cm−2. Quasi in situ/operando characterizations demonstrate the recurrence of reversible oxygen species under working potentials for enhanced activity and durability. It is theoretically revealed that Rh-RuO2 passes through a more optimal reaction path of lattice oxygen mediated mechanism-oxygen vacancy site mechanism induced by the synergistic interaction of defects and Ru–O–Rh active sites with the rate-determining step of *O formation, breaking the barrier limitation (*OOH) of the traditional adsorption evolution mechanism.



中文翻译:

揭示 Rh 掺杂 RuO2 催化剂用于持久酸性水氧化的氧空位位点机制

探索在酸性介质中对析氧反应 (OER) 具有高活性的耐用电催化剂对于通过聚合物电解质膜电解槽生产H 2至关重要,但它仍然具有紧迫的挑战性。在此,我们报告了 Rh 掺杂和表面氧空位的协同策略,通过 Rh-RuO 2的 Ru-O-Rh 活性位点精确调节非常规 OER 反应路径,同时提高内在活性和稳定性。稳定的低价催化剂表现出卓越的性能,在 10 mA cm -2时的过电位为 161 mV ,在 50 mA cm -2时的活性保持率超过 700 h 时为 99.2%. 准原位/操作表征表明可逆氧物种在工作电位下的重复出现以增强活性和耐久性。理论上揭示了Rh-RuO 2通过缺陷与Ru-O-Rh活性位点协同作用诱导的晶格氧介导机制-氧空位位点机制与*O的决速步骤的更优反应路径形成,打破了传统吸附演化机制的势垒限制(*OOH)。

更新日期:2023-03-14
down
wechat
bug