当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thermodynamically Stable Dual-Modified LiF&FeF3 layer Empowering Ni-Rich Cathodes with Superior Cyclabilities
Advanced Materials ( IF 27.4 ) Pub Date : 2023-03-13 , DOI: 10.1002/adma.202212308 Youqi Chu 1, 2, 3 , Yongbiao Mu 1, 2, 3 , Lingfeng Zou 1, 2, 3 , Yan Hu 1, 2, 3 , Jie Cheng 4 , Buke Wu 1, 2, 3 , Meisheng Han 1, 2, 3 , Shibo Xi 5 , Qing Zhang 1, 2, 3 , Lin Zeng 1, 2, 3
Advanced Materials ( IF 27.4 ) Pub Date : 2023-03-13 , DOI: 10.1002/adma.202212308 Youqi Chu 1, 2, 3 , Yongbiao Mu 1, 2, 3 , Lingfeng Zou 1, 2, 3 , Yan Hu 1, 2, 3 , Jie Cheng 4 , Buke Wu 1, 2, 3 , Meisheng Han 1, 2, 3 , Shibo Xi 5 , Qing Zhang 1, 2, 3 , Lin Zeng 1, 2, 3
Affiliation
Pushing the limit of cutoff potentials allows nickel-rich layered oxides to provide greater energy density and specific capacity whereas reducing thermodynamic and kinetic stability. Herein, a one-step dual-modified method is proposed for in situ synthesizing thermodynamically stable LiF&FeF3 coating on LiNi0.8Co0.1Mn0.1O2 surfaces by capturing lithium impurity on the surface to overcome the challenges suffered. The thermodynamically stabilized LiF&FeF3 coating can effectively suppress the nanoscale structural degradation and the intergranular cracks. Meanwhile, the LiF&FeF3 coating alleviates the outward migration of Oα− (α<2), increases oxygen vacancy formation energies, and accelerates interfacial Li+ diffusion. Benefited from these, the electrochemical performance of LiF&FeF3 modified materials is improved (83.1% capacity retention after 1000 cycles at 1C), even under exertive operational conditions of elevated temperature (91.3% capacity retention after 150 cycles at 1C). This work demonstrates that the dual-modified strategy can simultaneously address the problems of interfacial instability and bulk structural degradation and represents significant progress in developing high-performance lithium-ion batteries (LIBs).
中文翻译:
热力学稳定的双改性 LiF 和 FeF3 层赋予富镍阴极卓越的可循环性
推动截止电位的极限允许富镍层状氧化物提供更高的能量密度和比容量,同时降低热力学和动力学稳定性。在此,提出了一种通过捕获表面上的锂杂质在 LiNi 0.8 Co 0.1 Mn 0.1 O 2表面上原位合成热力学稳定的 LiF&FeF 3涂层的一步双改性方法,以克服所面临的挑战。热力学稳定的LiF&FeF 3涂层可有效抑制纳米级结构退化和晶间裂纹。同时,LiF&FeF 3涂层减轻了O α−的向外迁移(α<2),增加氧空位形成能,加速界面Li +扩散。得益于这些,LiF&FeF 3改性材料的电化学性能得到改善(1C 下 1000 次循环后容量保持率为 83.1%),即使在高温的剧烈操作条件下(1C 下 150 次循环后容量保持率为 91.3%)。这项工作表明,双改性策略可以同时解决界面不稳定和体积结构退化的问题,代表了开发高性能锂离子电池(LIB)的重大进展。
更新日期:2023-03-13
中文翻译:
热力学稳定的双改性 LiF 和 FeF3 层赋予富镍阴极卓越的可循环性
推动截止电位的极限允许富镍层状氧化物提供更高的能量密度和比容量,同时降低热力学和动力学稳定性。在此,提出了一种通过捕获表面上的锂杂质在 LiNi 0.8 Co 0.1 Mn 0.1 O 2表面上原位合成热力学稳定的 LiF&FeF 3涂层的一步双改性方法,以克服所面临的挑战。热力学稳定的LiF&FeF 3涂层可有效抑制纳米级结构退化和晶间裂纹。同时,LiF&FeF 3涂层减轻了O α−的向外迁移(α<2),增加氧空位形成能,加速界面Li +扩散。得益于这些,LiF&FeF 3改性材料的电化学性能得到改善(1C 下 1000 次循环后容量保持率为 83.1%),即使在高温的剧烈操作条件下(1C 下 150 次循环后容量保持率为 91.3%)。这项工作表明,双改性策略可以同时解决界面不稳定和体积结构退化的问题,代表了开发高性能锂离子电池(LIB)的重大进展。