当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Engineering of Metal–Organic Frameworks as Efficient Electrochemical Catalysts for Water Oxidation
Advanced Materials ( IF 27.4 ) Pub Date : 2023-03-13 , DOI: 10.1002/adma.202300945 Yizhe Liu, Xintong Li, Shoufeng Zhang, Zilong Wang, Qi Wang, Yonghe He, Wei-Hsiang Huang, Qidi Sun, Xiaoyan Zhong, Jue Hu, Xuyun Guo, Qing Lin, Zhuo Li, Ye Zhu, Chu-Chen Chueh, Chi-Liang Chen, Zhengtao Xu, Zonglong Zhu
Advanced Materials ( IF 27.4 ) Pub Date : 2023-03-13 , DOI: 10.1002/adma.202300945 Yizhe Liu, Xintong Li, Shoufeng Zhang, Zilong Wang, Qi Wang, Yonghe He, Wei-Hsiang Huang, Qidi Sun, Xiaoyan Zhong, Jue Hu, Xuyun Guo, Qing Lin, Zhuo Li, Ye Zhu, Chu-Chen Chueh, Chi-Liang Chen, Zhengtao Xu, Zonglong Zhu
Metal–organic framework (MOF) solids with their variable functionalities are relevant for energy conversion technologies. However, the development of electroactive and stable MOFs for electrocatalysis still faces challenges. Here, a molecularly engineered MOF system featuring a 2D coordination network based on mercaptan–metal links (e.g., nickel, as for Ni(DMBD)-MOF) is designed. The crystal structure is solved from microcrystals by a continuous-rotation electron diffraction (cRED) technique. Computational results indicate a metallic electronic structure of Ni(DMBD)-MOF due to the Ni–S coordination, highlighting the effective design of the thiol ligand for enhancing electroconductivity. Additionally, both experimental and theoretical studies indicate that (DMBD)-MOF offers advantages in the electrocatalytic oxygen evolution reaction (OER) over non-thiol (e.g., 1,4-benzene dicarboxylic acid) analog (BDC)-MOF, because it poses fewer energy barriers during the rate-limiting *O intermediate formation step. Iron-substituted NiFe(DMBD)-MOF achieves a current density of 100 mA cm−2 at a small overpotential of 280 mV, indicating a new MOF platform for efficient OER catalysis.
中文翻译:
金属有机骨架的分子工程作为水氧化的高效电化学催化剂
具有可变功能的金属有机骨架 (MOF) 固体与能量转换技术相关。然而,开发用于电催化的电活性和稳定的 MOFs 仍然面临挑战。在这里,设计了一个分子工程 MOF 系统,具有基于硫醇-金属链(例如,镍,对于 Ni(DMBD)-MOF)的二维配位网络。通过连续旋转电子衍射 (cRED) 技术从微晶解析晶体结构。计算结果表明,由于 Ni-S 配位,Ni(DMBD)-MOF 具有金属电子结构,突出了硫醇配体的有效设计以增强导电性。此外,实验和理论研究均表明,(DMBD)-MOF 在电催化析氧反应 (OER) 方面优于非硫醇(例如,1,4-苯二甲酸)类似物 (BDC)-MOF,因为它产生的能量更少限速 *O 中间形成步骤中的障碍。铁取代的 NiFe(DMBD)-MOF 实现了 100 mA cm 的电流密度-2在 280 mV 的小过电势下,表明新的 MOF 平台可用于高效的 OER 催化。
更新日期:2023-03-13
中文翻译:
金属有机骨架的分子工程作为水氧化的高效电化学催化剂
具有可变功能的金属有机骨架 (MOF) 固体与能量转换技术相关。然而,开发用于电催化的电活性和稳定的 MOFs 仍然面临挑战。在这里,设计了一个分子工程 MOF 系统,具有基于硫醇-金属链(例如,镍,对于 Ni(DMBD)-MOF)的二维配位网络。通过连续旋转电子衍射 (cRED) 技术从微晶解析晶体结构。计算结果表明,由于 Ni-S 配位,Ni(DMBD)-MOF 具有金属电子结构,突出了硫醇配体的有效设计以增强导电性。此外,实验和理论研究均表明,(DMBD)-MOF 在电催化析氧反应 (OER) 方面优于非硫醇(例如,1,4-苯二甲酸)类似物 (BDC)-MOF,因为它产生的能量更少限速 *O 中间形成步骤中的障碍。铁取代的 NiFe(DMBD)-MOF 实现了 100 mA cm 的电流密度-2在 280 mV 的小过电势下,表明新的 MOF 平台可用于高效的 OER 催化。