Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Controlling Isomerization of Photoswitches to Modulate 2D Logic-in-Memory Devices by Organic–Inorganic Interfacial Strategy
Advanced Science ( IF 14.3 ) Pub Date : 2023-03-11 , DOI: 10.1002/advs.202207443 Yongli Duan 1 , Miaomiao Song 1 , Fanxi Sun 1 , Yi Xu 2 , Fanfan Shi 3 , Hong Wang 3 , Yonghao Zheng 1, 4 , Chao He 5 , Xilin Liu 4 , Chen Wei 1 , Xu Deng 6 , Longquan Chen 2 , Fucai Liu 1 , Dongsheng Wang 1
Advanced Science ( IF 14.3 ) Pub Date : 2023-03-11 , DOI: 10.1002/advs.202207443 Yongli Duan 1 , Miaomiao Song 1 , Fanxi Sun 1 , Yi Xu 2 , Fanfan Shi 3 , Hong Wang 3 , Yonghao Zheng 1, 4 , Chao He 5 , Xilin Liu 4 , Chen Wei 1 , Xu Deng 6 , Longquan Chen 2 , Fucai Liu 1 , Dongsheng Wang 1
Affiliation
Logic-in-memory devices are a promising and powerful approach to realize data processing and storage driven by electrical bias. Here, an innovative strategy is reported to achieve the multistage photomodulation of 2D logic-in-memory devices, which is realized by controlling the photoisomerization of donor–acceptor Stenhouse adducts (DASAs) on the surface of graphene. Alkyl chains with various carbon spacer lengths (n = 1, 5, 11, and 17) are introduced onto DASAs to optimize the organic–inorganic interfaces: 1) Prolonging the carbon spacers weakens the intermolecular aggregation and promotes isomerization in the solid state. 2) Too long alkyl chains induce crystallization on the surface and hinder the photoisomerization. Density functional theory calculation indicates that the photoisomerization of DASAs on the graphene surface is thermodynamically promoted by increasing the carbon spacer lengths. The 2D logic-in-memory devices are fabricated by assembling DASAs onto the surface. Green light irradiation increases the drain–source current (Ids) of the devices, while heat triggers a reversed transfer. The multistage photomodulation is achieved by well-controlling the irradiation time and intensity. The strategy based on the dynamic control of 2D electronics by light integrates molecular programmability into the next generation of nanoelectronics.
中文翻译:
通过有机-无机界面策略控制光开关的异构化以调制二维内存逻辑器件
内存中逻辑设备是实现由电偏置驱动的数据处理和存储的一种有前途且功能强大的方法。在这里,报道了一种创新策略来实现二维内存逻辑器件的多级光调制,这是通过控制石墨烯表面上供体-受体 Stenhouse 加合物 (DASA) 的光异构化来实现的。具有不同碳间隔长度的烷基链 ( n = 1、5、11 和 17) 被引入 DASAs 以优化有机-无机界面:1) 延长碳间隔基削弱了分子间聚集并促进了固态异构化。2) 太长的烷基链会导致表面结晶,阻碍光致异构化。密度泛函理论计算表明,通过增加碳间隔长度,热力学促进了 DASA 在石墨烯表面的光致异构化。二维内存逻辑器件是通过将 DASA 组装到表面上来制造的。绿光照射增加了漏源电流(I ds) 的设备,而热量触发反向转移。多级光调制是通过很好地控制照射时间和强度来实现的。基于光对二维电子学动态控制的策略将分子可编程性集成到下一代纳米电子学中。
更新日期:2023-03-11
中文翻译:
通过有机-无机界面策略控制光开关的异构化以调制二维内存逻辑器件
内存中逻辑设备是实现由电偏置驱动的数据处理和存储的一种有前途且功能强大的方法。在这里,报道了一种创新策略来实现二维内存逻辑器件的多级光调制,这是通过控制石墨烯表面上供体-受体 Stenhouse 加合物 (DASA) 的光异构化来实现的。具有不同碳间隔长度的烷基链 ( n = 1、5、11 和 17) 被引入 DASAs 以优化有机-无机界面:1) 延长碳间隔基削弱了分子间聚集并促进了固态异构化。2) 太长的烷基链会导致表面结晶,阻碍光致异构化。密度泛函理论计算表明,通过增加碳间隔长度,热力学促进了 DASA 在石墨烯表面的光致异构化。二维内存逻辑器件是通过将 DASA 组装到表面上来制造的。绿光照射增加了漏源电流(I ds) 的设备,而热量触发反向转移。多级光调制是通过很好地控制照射时间和强度来实现的。基于光对二维电子学动态控制的策略将分子可编程性集成到下一代纳米电子学中。