Chemosphere ( IF 8.1 ) Pub Date : 2023-03-08 , DOI: 10.1016/j.chemosphere.2023.138356 Zaiming Chen 1 , Jiahao Shen 1 , Xiaoqin Xu 1 , Huajun Feng 1 , Meizhen Wang 1
Decreasing bioaccessible antibiotics, heavy metals, and antibiotic resistance genes (ARGs) in soil by adsorption is an attractive, but unrealized, approach for ARG risk reduction. This approach has the potential to reduce the (co)selection pressure from antibiotics and heavy metals on bacteria and ARG horizontal gene transformation to pathogens. Here, a wet-state silicon-rich biochar/ferrihydrite composite (SiC–Fe(W)) synthesized by loading ferrihydrite onto rice straw-derived biochar was examined for i) adsorption of oxytetracycline and Cu2+ to reduce (co)selection pressure and ii) adsorption of extracellular antibiotic resistance plasmid pBR322 (containing tetA and blaTEM-1) to inhibit ARG transformation. SiC–Fe(W) gained the adsorption priority of biochar (for Cu2+) and wet-state ferrihydrite (for oxytetracycline and pBR322) and showed adsorptive enhancement (for Cu2+ and oxytetracycline) from a more wrinkled and exposed surface from biochar silica-dispersed ferrihydrite and a more negatively charged biochar, and the adsorption capacity for SiC–Fe(W) was 17–135 times that of soil. Correspondingly, 10 g/kg SiC–Fe(W) amendment increased the soil adsorption coefficient Kd by 31%–1417% and reduced the selection pressure from dissolved oxytetracycline, co-selection pressure from dissolved Cu2+, and transformation frequency of pBR322 (assessed with Escherichia coli). The development of Fe–O–Si bonds on silicon-rich biochar in alkaline enhanced ferrihydrite stability and adsorption capacity (for oxytetracycline), presenting a new potential strategy of biochar/ferrihydrite composite synthesis for adsorptive inhibition of ARG proliferation and transformation in ARG pollution control.
中文翻译:
湿态富硅生物炭/水铁矿复合物吸附抗生素、重金属和抗生素质粒抑制抗生素抗性基因增殖/转化
通过吸附减少土壤中的生物可接触抗生素、重金属和抗生素抗性基因 (ARG) 是一种有吸引力但尚未实现的降低 ARG 风险的方法。这种方法有可能减少抗生素和重金属对细菌的(共同)选择压力以及 ARG 水平基因向病原体的转化。在这里,研究了通过将水铁矿负载到水稻秸秆衍生的生物炭上合成的湿态富硅生物炭/水铁矿复合材料 (SiC–Fe(W)) 的 i) 吸附土霉素和 Cu 2+ 以降低(共)选择压力ii) 胞外抗生素抗性质粒 pBR322 的吸附(含有tet A 和bla TEM-1) 抑制 ARG 转化。SiC–Fe(W) 获得了生物炭(对于 Cu 2+)和湿态水铁矿(对于土霉素和 pBR322)的吸附优先权,并显示出吸附增强(对于 Cu 2+和土霉素)来自生物炭的更多皱纹和暴露表面二氧化硅分散的水铁矿和带更多负电荷的生物炭,对 SiC-Fe(W) 的吸附能力是土壤的 17-135 倍。相应地,10 g/kg SiC–Fe(W) 改良剂使土壤吸附系数K d增加了 31%–1417%,并降低了溶解土霉素的选择压力、溶解 Cu 2+的共同选择压力和 pBR322 的转化频率(用大肠杆菌评估). 在碱性条件下富硅生物炭上 Fe-O-Si 键的发展增强了水铁矿的稳定性和吸附能力(对于土霉素),提出了生物炭/水铁矿复合合成在 ARG 污染控制中吸附抑制 ARG 增殖和转化的新潜在策略.