当前位置:
X-MOL 学术
›
Adv. Electron. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The Significance of an In Situ ALD Al2O3 Stacked Structure for p-Type SnO TFT Performance and Monolithic All-ALD-Channel CMOS Inverter Applications
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2023-03-10 , DOI: 10.1002/aelm.202201202 Hye‐Mi Kim 1 , Su‐Hwan Choi 2 , Han Uk Lee 3, 4 , Sung Beom Cho 3 , Jin‐Seong Park 1
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2023-03-10 , DOI: 10.1002/aelm.202201202 Hye‐Mi Kim 1 , Su‐Hwan Choi 2 , Han Uk Lee 3, 4 , Sung Beom Cho 3 , Jin‐Seong Park 1
Affiliation
Tin monoxide (SnO) has been studied widely over the past several decades due to its promising theoretical p-type performance. However, limited fabrication processes due to the low thermal and air stability of SnO have resulted in poor performance in thin-film transistors (TFTs). Here, it is suggested that in situ atomic layer deposition (ALD) of an Al2O3 capping layer can improve the electrical performance in SnO TFTs. By adopting an in situ stacking process, which protects vulnerable SnO thin films from exposure to air and contamination, SnO exhibits enhanced crystallinity, electrical performance, and improved scaling limitation of channel thickness. Especially, in situ stacked Al2O3 on a 7 nm SnO TFT has an exceptionally low subthreshold swing (0.15 V decade−1), high on/off ratio (6.54 × 105), and reasonable mobility (1.14 cm2 V−1 s−1) while the bare SnO TFT is not activated. Computational thermodynamics such as chemical potential analysis, nucleation Gibbs free-energy calculations, and various analytical techniques are used to reveal the origin of highly crystallized SnO formations via in situ deposition of Al2O3. Finally, state-of-the-art all-ALD-channel complementary metal–oxide–semiconductor inverters using n-type indium gallium zinc oxide and p-type SnO TFTs are integrated, which exhibit a maximum voltage gain of 240 V V−1 and a noise margin of 89.3%.
中文翻译:
原位 ALD Al2O3 堆叠结构对 p 型 SnO TFT 性能和单片全 ALD 通道 CMOS 逆变器应用的重要性
一氧化锡 (SnO) 因其具有前途的理论 p 型性能,在过去几十年中得到了广泛研究。然而,由于 SnO 的热稳定性和空气稳定性低,制造工艺有限,导致薄膜晶体管 (TFT) 的性能不佳。在此,建议 Al 2 O 3覆盖层的原位原子层沉积 (ALD) 可以改善 SnO TFT 的电气性能。通过采用原位堆叠工艺,保护脆弱的 SnO 薄膜免受空气和污染的影响,SnO 表现出更高的结晶度、电气性能,并改善了通道厚度的缩放限制。特别是,原位堆叠的 Al 2 O 3在 7 nm SnO TFT 上具有极低的亚阈值摆幅(0.15 V decade -1)、高开/关比(6.54 × 10 5)和合理的迁移率(1.14 cm 2 V -1 s -1),而裸露的 SnO TFT 未激活。化学势分析、成核吉布斯自由能计算和各种分析技术等计算热力学被用于通过 Al 2 O 3的原位沉积来揭示高度结晶的 SnO 形成的起源。最后,集成了使用 n 型氧化铟镓锌和 p 型 SnO TFT 的最先进的全 ALD 通道互补金属氧化物半导体逆变器,其最大电压增益为 240 VV−1,噪声容限为 89.3%。
更新日期:2023-03-10
中文翻译:
原位 ALD Al2O3 堆叠结构对 p 型 SnO TFT 性能和单片全 ALD 通道 CMOS 逆变器应用的重要性
一氧化锡 (SnO) 因其具有前途的理论 p 型性能,在过去几十年中得到了广泛研究。然而,由于 SnO 的热稳定性和空气稳定性低,制造工艺有限,导致薄膜晶体管 (TFT) 的性能不佳。在此,建议 Al 2 O 3覆盖层的原位原子层沉积 (ALD) 可以改善 SnO TFT 的电气性能。通过采用原位堆叠工艺,保护脆弱的 SnO 薄膜免受空气和污染的影响,SnO 表现出更高的结晶度、电气性能,并改善了通道厚度的缩放限制。特别是,原位堆叠的 Al 2 O 3在 7 nm SnO TFT 上具有极低的亚阈值摆幅(0.15 V decade -1)、高开/关比(6.54 × 10 5)和合理的迁移率(1.14 cm 2 V -1 s -1),而裸露的 SnO TFT 未激活。化学势分析、成核吉布斯自由能计算和各种分析技术等计算热力学被用于通过 Al 2 O 3的原位沉积来揭示高度结晶的 SnO 形成的起源。最后,集成了使用 n 型氧化铟镓锌和 p 型 SnO TFT 的最先进的全 ALD 通道互补金属氧化物半导体逆变器,其最大电压增益为 240 VV−1,噪声容限为 89.3%。