当前位置: X-MOL 学术IEEE Trans. Geosci. Remote Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adaptive Reference-Related Graph Embedding for Hyperspectral Anomaly Detection
IEEE Transactions on Geoscience and Remote Sensing ( IF 7.5 ) Pub Date : 2023-02-27 , DOI: 10.1109/tgrs.2023.3249344
Yubo Ma 1 , Siyu Cai 1 , Jie Zhou 1
Affiliation  

Graph embedding (GE) provides an effective way to reveal the intrinsic feature of high-dimensional data on the foundation of preserving topological properties. Under the framework of GE, the hyperspectral image can be represented by a weighted graph, where pixels and similarities among them are treated as vertices and edge weights, respectively. In this article, an adaptive reference-related GE (ARGE) method is proposed to efficaciously obtain the low-dimensional feature and improve computational efficiency. The ARGE method is composed of two primary processes. The key to connecting these two processes is the reference vertices set, which is the abstraction of graph topological features. First, the reference vertices are adaptively selected through a three-step adaptive reference set selection (ARSS) algorithm. Second, the original high-dimensional graph is embedded as a low-dimensional graph through preserving the reference-related structure. Specifically, the pairwise similarities between vertices and reference vertices are preserved in embedding space. In addition, a new hybrid dissimilarity measure of Rao distance and spectral information divergence (RD-SID) is designed to depict the spectral difference between pixels. To evaluate the effectiveness of the proposed method, the obtained low-dimensional feature is fed into the anomaly detector to detect anomalous pixels. The experimental results on five real and one synthetic hyperspectral datasets demonstrate the superiority of the proposed ARGE method over the compared feature extraction methods.

中文翻译:

用于高光谱异常检测的自适应参考相关图嵌入

图嵌入(GE)提供了一种在保留拓扑属性的基础上揭示高维数据内在特征的有效方法。在GE的框架下,高光谱图像可以用加权图表示,其中像素和它们之间的相似性分别被视为顶点和边缘权重。在本文中,提出了一种自适应参考相关GE(ARGE)方法来有效地获取低维特征并提高计算效率。ARGE 方法由两个主要过程组成。连接这两个过程的关键是参考顶点集,它是图拓扑特征的抽象。首先,通过三步自适应参考集选择 (ARSS) 算法自适应选择参考顶点。第二,通过保留参考相关结构,将原始高维图嵌入为低维图。具体来说,顶点和参考顶点之间的成对相似性被保留在嵌入空间中。此外,还设计了一种新的 Rao 距离和光谱信息散度混合相异性度量 (RD-SID) 来描述像素之间的光谱差异。为了评估所提出方法的有效性,将获得的低维特征输入异常检测器以检测异常像素。五个真实和一个合成高光谱数据集的实验结果证明了所提出的 ARGE 方法优于比较的特征提取方法。顶点和参考顶点之间的成对相似性保留在嵌入空间中。此外,还设计了一种新的 Rao 距离和光谱信息散度混合相异性度量 (RD-SID) 来描述像素之间的光谱差异。为了评估所提出方法的有效性,将获得的低维特征输入异常检测器以检测异常像素。五个真实和一个合成高光谱数据集的实验结果证明了所提出的 ARGE 方法优于比较的特征提取方法。顶点和参考顶点之间的成对相似性保留在嵌入空间中。此外,还设计了一种新的 Rao 距离和光谱信息散度混合相异性度量 (RD-SID) 来描述像素之间的光谱差异。为了评估所提出方法的有效性,将获得的低维特征输入异常检测器以检测异常像素。五个真实和一个合成高光谱数据集的实验结果证明了所提出的 ARGE 方法优于比较的特征提取方法。一种新的 Rao 距离和光谱信息散度混合相异性度量 (RD-SID) 旨在描述像素之间的光谱差异。为了评估所提出方法的有效性,将获得的低维特征输入异常检测器以检测异常像素。五个真实和一个合成高光谱数据集的实验结果证明了所提出的 ARGE 方法优于比较的特征提取方法。一种新的 Rao 距离和光谱信息散度混合相异性度量 (RD-SID) 旨在描述像素之间的光谱差异。为了评估所提出方法的有效性,将获得的低维特征输入异常检测器以检测异常像素。五个真实和一个合成高光谱数据集的实验结果证明了所提出的 ARGE 方法优于比较的特征提取方法。
更新日期:2023-02-27
down
wechat
bug