当前位置:
X-MOL 学术
›
Annu. Rev. Stat. Appl.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Brief Tour of Deep Learning from a Statistical Perspective
Annual Review of Statistics and Its Application ( IF 7.4 ) Pub Date : 2023-03-09 , DOI: 10.1146/annurev-statistics-032921-013738 Eric Nalisnick 1 , Padhraic Smyth 2 , Dustin Tran 3
Annual Review of Statistics and Its Application ( IF 7.4 ) Pub Date : 2023-03-09 , DOI: 10.1146/annurev-statistics-032921-013738 Eric Nalisnick 1 , Padhraic Smyth 2 , Dustin Tran 3
Affiliation
We expose the statistical foundations of deep learning with the goal of facilitating conversation between the deep learning and statistics communities. We highlight core themes at the intersection; summarize key neural models, such as feedforward neural networks, sequential neural networks, and neural latent variable models; and link these ideas to their roots in probability and statistics. We also highlight research directions in deep learning where there are opportunities for statistical contributions.
中文翻译:
从统计角度看深度学习简介
我们揭示了深度学习的统计基础,旨在促进深度学习和统计社区之间的对话。我们在交叉点突出核心主题;总结关键神经模型,例如前馈神经网络、序列神经网络和神经潜在变量模型;并将这些想法与它们在概率和统计中的根源联系起来。我们还强调了深度学习中有机会做出统计贡献的研究方向。
更新日期:2023-03-09
中文翻译:
从统计角度看深度学习简介
我们揭示了深度学习的统计基础,旨在促进深度学习和统计社区之间的对话。我们在交叉点突出核心主题;总结关键神经模型,例如前馈神经网络、序列神经网络和神经潜在变量模型;并将这些想法与它们在概率和统计中的根源联系起来。我们还强调了深度学习中有机会做出统计贡献的研究方向。