当前位置:
X-MOL 学术
›
Proc. IEEE
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Review of Integrated Systems and Components for 6G Wireless Communication in the D-Band
Proceedings of the IEEE ( IF 23.2 ) Pub Date : 2-28-2023 , DOI: 10.1109/jproc.2023.3240127 Tim Maiwald 1 , Teng Li 2 , George-Roberto Hotopan 3 , Katharina Kolb 1 , Karina Disch 4 , Julian Potschka 5 , Alexander Haag 6 , Marco Dietz 7 , Bjorn Debaillie 8 , Thomas Zwick 6 , Klaus Aufinger 9 , Dieter Ferling 3 , Robert Weigel 10 , Akshay Visweswaran 11
Proceedings of the IEEE ( IF 23.2 ) Pub Date : 2-28-2023 , DOI: 10.1109/jproc.2023.3240127 Tim Maiwald 1 , Teng Li 2 , George-Roberto Hotopan 3 , Katharina Kolb 1 , Karina Disch 4 , Julian Potschka 5 , Alexander Haag 6 , Marco Dietz 7 , Bjorn Debaillie 8 , Thomas Zwick 6 , Klaus Aufinger 9 , Dieter Ferling 3 , Robert Weigel 10 , Akshay Visweswaran 11
Affiliation
The evolution of wireless communication points to increasing demands on throughput for data-intensive applications in modern society. Integrated millimeter-wave systems with electrical beam-steering capabilities are promising candidates for wireless technologies of the future and are currently the subject of widespread academic and commercial research. The $D$ -band, ranging from 110–170 GHz, offers high aggregate bandwidths (BWs), low atmospheric absorption, and multi-GHz operation at amenable fractional BWs. It, therefore, has the potential to foster efficient, highly integrated wireless-communication systems with data rates approaching 100 Gb/s. This article reviews all aspects of hardware integration against the backdrop of an extensive literature review and outlines the challenges and possible solutions for practical 6G wireless systems in the $D$ -band. To this end, this article covers a number of related topics in depth, which includes system definition, possible radio architectures and array configurations, the scope and potential of integrated circuit (IC) technologies, the design and characterization of key circuit blocks, advances in antenna and packaging technologies for high-frequency systems, and an overview of measurement techniques currently employed at $D$ -band frequencies. A system-level study based on radio-link simulations of different single-carrier quadrature amplitude modulation (QAM) schemes is presented, which quantifies that the impact physical nonidealities, such as signal-to-noise ratio, phase noise, intermodulation distortion, and amplitude and phase imbalances in quadrature signal paths, have on bit-error rates in broadband $D$ -band communication systems. This is followed by a comparative assessment of different arrayed-system configurations that include traditional phased arrays, the use of polarization diversity for the transmission of different or identical data streams, and multiple input multiple output (MIMO) operation. The article also presents an overview of possible transceiver architectures for implementing beam-steering arrays and an outline of the associated tradeoffs. The beam-squinting effect seen in large arrays is also investigated in detail. On the implementation front, we present a comparison between different integrated-circuit technologies for high-frequency applications. These include CMOS and SiGe bipolar complementary metal oxide semiconductor (BiCMOS) heterojunction bipolar transistors (HBTs) in silicon technologies, and MOSFETs, HBTs, and HEMTs in III–V technologies, such as InP and GaAs. Implementation challenges are then addressed, and these include the design of high-frequency circuits in the latest IC technologies, current advances in antenna and packaging technologies, and emerging solutions for hybrid integration. The article also details the design and characterization of critical $D$ -band transceiver circuit blocks, namely, power and low-noise amplifiers, mixers, phase shifters, passive components for quadrature-phase generation, and radiators exploring hybrid antennas, which we have developed over the course of the past five years. These results compliment the literature survey with comparisons with state-of-the-art designs and are applied to radio-link simulations to predict the performance of practicable wireless links.
中文翻译:
D 频段 6G 无线通信集成系统和组件回顾
无线通信的发展表明现代社会对数据密集型应用的吞吐量需求不断增加。具有电子波束控制功能的集成毫米波系统是未来无线技术的有希望的候选者,并且是目前广泛的学术和商业研究的主题。 $D$ 频段范围为 110–170 GHz,提供高聚合带宽 (BW)、低大气吸收以及在合适的分数 BW 下进行多 GHz 操作。因此,它有潜力培育数据速率接近 100 Gb/s 的高效、高度集成的无线通信系统。本文在广泛文献综述的背景下回顾了硬件集成的各个方面,并概述了 D$ 频段实际 6G 无线系统面临的挑战和可能的解决方案。为此,本文深入探讨了许多相关主题,包括系统定义、可能的无线电架构和阵列配置、集成电路 (IC) 技术的范围和潜力、关键电路块的设计和特性、高频系统的天线和封装技术,以及目前在 $D$ 频带频率上使用的测量技术的概述。提出了一种基于不同单载波正交幅度调制 (QAM) 方案的无线电链路仿真的系统级研究,该研究量化了物理非理想性的影响,例如信噪比、相位噪声、互调失真和正交信号路径中的幅度和相位不平衡会影响宽带$D$频带通信系统中的误码率。 接下来是对不同阵列系统配置的比较评估,包括传统相控阵、使用极化分集传输不同或相同数据流以及多输入多输出 (MIMO) 操作。本文还概述了用于实现波束控制阵列的可能收发器架构以及相关权衡的概述。还详细研究了大型阵列中的光束斜视效应。在实现方面,我们对高频应用的不同集成电路技术进行了比较。其中包括硅技术中的 CMOS 和 SiGe 双极互补金属氧化物半导体 (BiCMOS) 异质结双极晶体管 (HBT),以及 III-V 族技术(例如 InP 和 GaAs)中的 MOSFET、HBT 和 HEMT。然后解决实施挑战,其中包括最新 IC 技术中的高频电路设计、天线和封装技术的当前进展以及混合集成的新兴解决方案。本文还详细介绍了关键的 D$ 频段收发器电路模块的设计和特性,即功率和低噪声放大器、混频器、移相器、用于正交相位生成的无源元件以及探索混合天线的辐射器,我们已经经过过去五年的发展。这些结果通过与最先进的设计进行比较来补充文献调查,并应用于无线电链路模拟以预测可行的无线链路的性能。
更新日期:2024-08-26
中文翻译:
D 频段 6G 无线通信集成系统和组件回顾
无线通信的发展表明现代社会对数据密集型应用的吞吐量需求不断增加。具有电子波束控制功能的集成毫米波系统是未来无线技术的有希望的候选者,并且是目前广泛的学术和商业研究的主题。 $D$ 频段范围为 110–170 GHz,提供高聚合带宽 (BW)、低大气吸收以及在合适的分数 BW 下进行多 GHz 操作。因此,它有潜力培育数据速率接近 100 Gb/s 的高效、高度集成的无线通信系统。本文在广泛文献综述的背景下回顾了硬件集成的各个方面,并概述了 D$ 频段实际 6G 无线系统面临的挑战和可能的解决方案。为此,本文深入探讨了许多相关主题,包括系统定义、可能的无线电架构和阵列配置、集成电路 (IC) 技术的范围和潜力、关键电路块的设计和特性、高频系统的天线和封装技术,以及目前在 $D$ 频带频率上使用的测量技术的概述。提出了一种基于不同单载波正交幅度调制 (QAM) 方案的无线电链路仿真的系统级研究,该研究量化了物理非理想性的影响,例如信噪比、相位噪声、互调失真和正交信号路径中的幅度和相位不平衡会影响宽带$D$频带通信系统中的误码率。 接下来是对不同阵列系统配置的比较评估,包括传统相控阵、使用极化分集传输不同或相同数据流以及多输入多输出 (MIMO) 操作。本文还概述了用于实现波束控制阵列的可能收发器架构以及相关权衡的概述。还详细研究了大型阵列中的光束斜视效应。在实现方面,我们对高频应用的不同集成电路技术进行了比较。其中包括硅技术中的 CMOS 和 SiGe 双极互补金属氧化物半导体 (BiCMOS) 异质结双极晶体管 (HBT),以及 III-V 族技术(例如 InP 和 GaAs)中的 MOSFET、HBT 和 HEMT。然后解决实施挑战,其中包括最新 IC 技术中的高频电路设计、天线和封装技术的当前进展以及混合集成的新兴解决方案。本文还详细介绍了关键的 D$ 频段收发器电路模块的设计和特性,即功率和低噪声放大器、混频器、移相器、用于正交相位生成的无源元件以及探索混合天线的辐射器,我们已经经过过去五年的发展。这些结果通过与最先进的设计进行比较来补充文献调查,并应用于无线电链路模拟以预测可行的无线链路的性能。