当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Biomimetic Gradient Bouligand Structure Enhances Impact Resistance of Ceramic-Polymer Composites
Advanced Materials ( IF 27.4 ) Pub Date : 2023-03-09 , DOI: 10.1002/adma.202211175 Shao-Meng Wen 1 , Si-Ming Chen 1 , Weitao Gao 2 , Zhijun Zheng 2 , Jia-Zheng Bao 1 , Chen Cui 1 , Shuai Liu 2 , Huai-Ling Gao 1 , Shu-Hong Yu 1
Advanced Materials ( IF 27.4 ) Pub Date : 2023-03-09 , DOI: 10.1002/adma.202211175 Shao-Meng Wen 1 , Si-Ming Chen 1 , Weitao Gao 2 , Zhijun Zheng 2 , Jia-Zheng Bao 1 , Chen Cui 1 , Shuai Liu 2 , Huai-Ling Gao 1 , Shu-Hong Yu 1
Affiliation
Biological materials relied on multiple synergistic structural design elements typically exhibit excellent comprehensive mechanical properties. Hierarchical incorporation of different biostructural elements into a single artificial material is a promising approach to enhance mechanical properties, but remains challenging. Herein, a biomimetic structural design strategy is proposed by coupling gradient structure with twisted plywood Bouligand structure, attempting to improve the impact resistance of ceramic-polymer composites. Via robocasting and sintering, kaolin ceramic filaments reinforced by coaxially aligned alumina nanoplatelets are arranged into Bouligand structure with a gradual transition in filament spacing along the thickness direction. After the following polymer infiltration, biomimetic ceramic-polymer composites with a gradient Bouligand (GB) structure are eventually fabricated. Experimental investigations reveal that the incorporation of gradient structure into Bouligand structure improves both the peak force and total energy absorption of the obtained ceramic-polymer composites. Computational modeling further suggests the substantial improvement in impact resistance by adopting GB structure, and clarifies the underlying deformation behavior of the biomimetic GB structured composites under impact. This biomimetic design strategy may provide valuable insights for developing lightweight and impact-resistant structural materials in the future.
中文翻译:
仿生梯度 Bouligand 结构增强陶瓷-聚合物复合材料的抗冲击性
依赖于多种协同结构设计元素的生物材料通常表现出优异的综合力学性能。将不同的生物结构元素分层合并到单一人造材料中是一种提高机械性能的有前途的方法,但仍然具有挑战性。在此,提出了一种将梯度结构与扭曲胶合板 Bouligand 结构耦合的仿生结构设计策略,试图提高陶瓷-聚合物复合材料的抗冲击性。通过机械铸造和烧结,由同轴排列的氧化铝纳米片增强的高岭土陶瓷细丝排列成 Bouligand 结构,细丝间距沿厚度方向逐渐过渡。经过以下聚合物渗透,最终制造出具有梯度 Bouligand (GB) 结构的仿生陶瓷聚合物复合材料。实验研究表明,将梯度结构结合到 Bouligand 结构中可以提高所获得的陶瓷-聚合物复合材料的峰值力和总能量吸收。计算模型进一步表明采用 GB 结构可显着提高抗冲击性,并阐明仿生 GB 结构复合材料在冲击下的潜在变形行为。这种仿生设计策略可能为未来开发轻质和抗冲击结构材料提供有价值的见解。实验研究表明,将梯度结构结合到 Bouligand 结构中可以提高所获得的陶瓷-聚合物复合材料的峰值力和总能量吸收。计算模型进一步表明采用 GB 结构可显着提高抗冲击性,并阐明仿生 GB 结构复合材料在冲击下的潜在变形行为。这种仿生设计策略可能为未来开发轻质和抗冲击结构材料提供有价值的见解。实验研究表明,将梯度结构结合到 Bouligand 结构中可以提高所获得的陶瓷-聚合物复合材料的峰值力和总能量吸收。计算模型进一步表明采用 GB 结构可显着提高抗冲击性,并阐明仿生 GB 结构复合材料在冲击下的潜在变形行为。这种仿生设计策略可能为未来开发轻质和抗冲击结构材料提供有价值的见解。并阐明了仿生 GB 结构复合材料在冲击下的潜在变形行为。这种仿生设计策略可能为未来开发轻质和抗冲击结构材料提供有价值的见解。并阐明了仿生 GB 结构复合材料在冲击下的潜在变形行为。这种仿生设计策略可能为未来开发轻质和抗冲击结构材料提供有价值的见解。
更新日期:2023-03-09
中文翻译:
仿生梯度 Bouligand 结构增强陶瓷-聚合物复合材料的抗冲击性
依赖于多种协同结构设计元素的生物材料通常表现出优异的综合力学性能。将不同的生物结构元素分层合并到单一人造材料中是一种提高机械性能的有前途的方法,但仍然具有挑战性。在此,提出了一种将梯度结构与扭曲胶合板 Bouligand 结构耦合的仿生结构设计策略,试图提高陶瓷-聚合物复合材料的抗冲击性。通过机械铸造和烧结,由同轴排列的氧化铝纳米片增强的高岭土陶瓷细丝排列成 Bouligand 结构,细丝间距沿厚度方向逐渐过渡。经过以下聚合物渗透,最终制造出具有梯度 Bouligand (GB) 结构的仿生陶瓷聚合物复合材料。实验研究表明,将梯度结构结合到 Bouligand 结构中可以提高所获得的陶瓷-聚合物复合材料的峰值力和总能量吸收。计算模型进一步表明采用 GB 结构可显着提高抗冲击性,并阐明仿生 GB 结构复合材料在冲击下的潜在变形行为。这种仿生设计策略可能为未来开发轻质和抗冲击结构材料提供有价值的见解。实验研究表明,将梯度结构结合到 Bouligand 结构中可以提高所获得的陶瓷-聚合物复合材料的峰值力和总能量吸收。计算模型进一步表明采用 GB 结构可显着提高抗冲击性,并阐明仿生 GB 结构复合材料在冲击下的潜在变形行为。这种仿生设计策略可能为未来开发轻质和抗冲击结构材料提供有价值的见解。实验研究表明,将梯度结构结合到 Bouligand 结构中可以提高所获得的陶瓷-聚合物复合材料的峰值力和总能量吸收。计算模型进一步表明采用 GB 结构可显着提高抗冲击性,并阐明仿生 GB 结构复合材料在冲击下的潜在变形行为。这种仿生设计策略可能为未来开发轻质和抗冲击结构材料提供有价值的见解。并阐明了仿生 GB 结构复合材料在冲击下的潜在变形行为。这种仿生设计策略可能为未来开发轻质和抗冲击结构材料提供有价值的见解。并阐明了仿生 GB 结构复合材料在冲击下的潜在变形行为。这种仿生设计策略可能为未来开发轻质和抗冲击结构材料提供有价值的见解。