Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Constructing Spatially Separated Cage-Like Z-scheme Heterojunction Photocatalyst for Enhancing Photocatalytic H2 Evolution
Small ( IF 13.0 ) Pub Date : 2023-03-08 , DOI: 10.1002/smll.202208266 Fei Zhao 1, 2 , Ying Lo Law 3 , Nan Zhang 1, 2 , Xiao Wang 1, 2 , Wenli Wu 1, 2 , Zhengtang Luo 3 , Yuhua Wang 1, 2
Small ( IF 13.0 ) Pub Date : 2023-03-08 , DOI: 10.1002/smll.202208266 Fei Zhao 1, 2 , Ying Lo Law 3 , Nan Zhang 1, 2 , Xiao Wang 1, 2 , Wenli Wu 1, 2 , Zhengtang Luo 3 , Yuhua Wang 1, 2
Affiliation
Heterojunctions coupled into micro-mesoscopic structures is an attractive strategy to optimize the light harvesting and carrier separation of semiconductor photocatalysts. A self-templating method of ion exchange is reported to synthesize an exquisite hollow cage-structured Ag2S@CdS/ZnS that direct Z-scheme heterojunction photocatalyst. On the ultrathin shell of the cage, Ag2S, CdS, and ZnS with Zn-vacancies (VZn) are arranged sequentially from outside to inside. Among them, the photogenerated electrons are excited by ZnS to the VZn energy level and then recombine with the photogenerated holes that are generated by CdS, while the electrons remained in the CdS conduction band are further transferred to Ag2S. The ingenious cooperation of the Z-scheme heterojunction with the hollow structure optimizes the photogenerated charges transport channel, spatially separated the oxidation and reduction half-reactions, decreases the charge recombination probability, and simultaneously improves the light harvesting efficiency. As a result, the photocatalytic hydrogen evolution activity of the optimal sample is 136.6 and 17.3 times higher than that of cage-like ZnS with VZn and CdS by, respectively. This unique strategy demonstrates the tremendous potential of the incorporation of heterojunction construction to morphology design of photocatalytic materials, and also provided a reasonable route for designing other efficient synergistic photocatalytic reactions.
中文翻译:
构建空间分离的笼状 Z 型异质结光催化剂以增强光催化放氢
异质结耦合到微介观结构中是一种有吸引力的策略,可以优化半导体光催化剂的光捕获和载流子分离。据报道,一种离子交换的自模板方法合成了一种精致的空心笼结构 Ag 2 S@CdS/ZnS,该方法可直接用于 Z 型异质结光催化剂。在笼的超薄壳上,Ag 2 S、CdS和具有Zn空位(V Zn)的ZnS从外到内依次排列。其中,光生电子被ZnS激发到V Zn能级,然后与CdS产生的光生空穴复合,而留在CdS导带中的电子进一步转移到Ag2 S. Z型异质结与中空结构的巧妙配合,优化了光生电荷传输通道,空间分离了氧化还原半反应,降低了电荷复合概率,同时提高了光捕获效率。结果表明,最佳样品的光催化析氢活性分别比含V Zn和 CdS的笼状 ZnS 高 136.6 倍和 17.3 倍。这种独特的策略展示了将异质结结构结合到光催化材料形态设计中的巨大潜力,也为设计其他高效的协同光催化反应提供了合理的途径。
更新日期:2023-03-08
中文翻译:
构建空间分离的笼状 Z 型异质结光催化剂以增强光催化放氢
异质结耦合到微介观结构中是一种有吸引力的策略,可以优化半导体光催化剂的光捕获和载流子分离。据报道,一种离子交换的自模板方法合成了一种精致的空心笼结构 Ag 2 S@CdS/ZnS,该方法可直接用于 Z 型异质结光催化剂。在笼的超薄壳上,Ag 2 S、CdS和具有Zn空位(V Zn)的ZnS从外到内依次排列。其中,光生电子被ZnS激发到V Zn能级,然后与CdS产生的光生空穴复合,而留在CdS导带中的电子进一步转移到Ag2 S. Z型异质结与中空结构的巧妙配合,优化了光生电荷传输通道,空间分离了氧化还原半反应,降低了电荷复合概率,同时提高了光捕获效率。结果表明,最佳样品的光催化析氢活性分别比含V Zn和 CdS的笼状 ZnS 高 136.6 倍和 17.3 倍。这种独特的策略展示了将异质结结构结合到光催化材料形态设计中的巨大潜力,也为设计其他高效的协同光催化反应提供了合理的途径。