Nature Communications ( IF 14.7 ) Pub Date : 2023-03-09 , DOI: 10.1038/s41467-023-36929-8 Xiang-Dong Chen 1, 2, 3 , En-Hui Wang 1, 2 , Long-Kun Shan 1, 2 , Shao-Chun Zhang 1, 2 , Ce Feng 1, 2 , Yu Zheng 1, 2 , Yang Dong 1, 2 , Guang-Can Guo 1, 2, 3 , Fang-Wen Sun 1, 2, 3
The accurate radio frequency (RF) ranging and localizing of objects has benefited the researches including autonomous driving, the Internet of Things, and manufacturing. Quantum receivers have been proposed to detect the radio signal with ability that can outperform conventional measurement. As one of the most promising candidates, solid spin shows superior robustness, high spatial resolution and miniaturization. However, challenges arise from the moderate response to a high frequency RF signal. Here, by exploiting the coherent interaction between quantum sensor and RF field, we demonstrate quantum enhanced radio detection and ranging. The RF magnetic sensitivity is improved by three orders to 21 \({{{{{{{\rm{pT}}}}}}}}/\sqrt{{{{{{{{\rm{Hz}}}}}}}}}\), based on nanoscale quantum sensing and RF focusing. Further enhancing the response of spins to the target’s position through multi-photon excitation, a ranging accuracy of 16 μm is realized with a GHz RF signal. The results pave the way for exploring quantum enhanced radar and communications with solid spins.
中文翻译:
量子增强型无线电探测和固体自旋测距
精确的射频(RF)测距和物体定位已使自动驾驶、物联网和制造等研究受益。已经提出量子接收器来检测具有优于传统测量的能力的无线电信号。作为最有前途的候选者之一,固体自旋显示出卓越的稳健性、高空间分辨率和小型化。然而,挑战来自对高频射频信号的适度响应。在这里,通过利用量子传感器和射频场之间的相干相互作用,我们展示了量子增强无线电检测和测距。射频磁灵敏度提高了三个数量级,达到 21 \({{{{{{{\rm{pT}}}}}}}}/\sqrt{{{{{{{{\rm{Hz}}} }}}}}}\),基于纳米级量子传感和射频聚焦。通过多光子激发进一步增强自旋对目标位置的响应,使用 GHz RF 信号实现了16 μ m 的测距精度。结果为探索量子增强雷达和固体自旋通信铺平了道路。