Acta Biomaterialia ( IF 9.4 ) Pub Date : 2023-03-08 , DOI: 10.1016/j.actbio.2023.02.039 Natalie P Holmes 1 , Iman Roohani 2 , Ali Entezari 3 , Paul Guagliardo 4 , Mohammad Mirkhalaf 5 , Zufu Lu 2 , Yi-Sheng Chen 6 , Limei Yang 7 , Colin R Dunstan 2 , Hala Zreiqat 2 , Julie M Cairney 6
Here we report the first atom probe study to reveal the atomic-scale composition of in vivo bone formed in a bioceramic scaffold (strontium-hardystonite-gahnite) after 12-month implantation in a large bone defect in sheep tibia. The composition of the newly formed bone tissue differs to that of mature cortical bone tissue, and elements from the degrading bioceramic implant, particularly aluminium (Al), are present in both the newly formed bone and in the original mature cortical bone tissue at the perimeter of the bioceramic implant. Atom probe tomography confirmed that the trace elements are released from the bioceramic and are actively transported into the newly formed bone. NanoSIMS mapping, as a complementary technique, confirmed the distribution of the released ions from the bioceramic into the newly formed bone tissue within the scaffold. This study demonstrated the combined benefits of atom probe and nanoSIMS in assessing nanoscopic chemical composition changes at precise locations within the tissue/biomaterial interface. Such information can assist in understanding the interaction of scaffolds with surrounding tissue, hence permitting further iterative improvements to the design and performance of biomedical implants, and ultimately reducing the risk of complications or failure while increasing the rate of tissue formation.
Statement of significance
The repair of critical-sized load-bearing bone defects is a challenge, and precisely engineered bioceramic scaffold implants is an emerging potential treatment strategy. However, we still do not understand the effect of the bioceramic scaffold implants on the composition of newly formed bone in vivo and surrounding existing mature bone. This article reports an innovative route to solve this problem, the combined power of atom probe tomography and nanoSIMS is used to spatially define elemental distributions across bioceramic implant sites. We determine the nanoscopic chemical composition changes at the Sr-HT Gahnite bioceramic/bone tissue interface, and importantly, provide the first report of in vivo bone tissue chemical composition formed in a bioceramic scaffold.
中文翻译:
使用原子探针断层扫描发现未知领域:生物陶瓷支架/骨组织界面的元素交换
在这里,我们报告了第一个原子探针研究,揭示了在绵羊胫骨的大骨缺损中植入 12 个月后,在生物陶瓷支架(锶-硬石英石-锌锰矿)中形成的体内骨的原子级组成。新形成的骨组织的组成不同于成熟的皮质骨组织,降解生物陶瓷植入物中的元素,特别是铝 (Al),存在于新形成的骨骼和周围原始成熟的皮质骨组织中生物陶瓷植入物。原子探针断层扫描证实,微量元素从生物陶瓷中释放出来,并被主动输送到新形成的骨骼中。NanoSIMS 映射作为一种补充技术,确认了释放离子的分布从生物陶瓷进入支架内新形成的骨组织。这项研究展示了原子探针和 nanoSIMS 在评估组织/生物材料界面内精确位置的纳米级化学成分变化方面的综合优势。这些信息可以帮助理解支架与周围组织的相互作用,从而允许进一步迭代改进生物医学植入物的设计和性能,并最终降低并发症或失败的风险,同时提高组织形成的速度。
重要性声明
修复临界尺寸的承重骨缺损是一项挑战,而精确设计的生物陶瓷支架植入物是一种新兴的潜在治疗策略。然而,我们仍然不了解生物陶瓷支架植入物对体内新形成骨和周围现有成熟骨的组成的影响。本文报告了解决此问题的创新途径,即原子探针断层扫描和 nanoSIMS 的综合能力用于在空间上定义跨生物陶瓷植入部位的元素分布。我们确定了 Sr-HT Gahnite 生物陶瓷/骨组织界面的纳米化学成分变化,重要的是,提供了在生物陶瓷支架中形成的体内骨组织化学成分的第一份报告。