当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding Interfacial Properties for Enhanced Solar Evaporation Devices: From Geometrical to Physical Interfaces
ACS Energy Letters ( IF 19.3 ) Pub Date : 2023-03-06 , DOI: 10.1021/acsenergylett.3c00054
Shang Liu 1, 2, 3 , Shiteng Li 2, 3 , Meng Lin 2, 3
Affiliation  

Various materials and device configurations have been reported to enhance the evaporation efficiency of solar interfacial evaporation systems, but it has not yet been revealed how to quantitatively assess the optimal materials and devices to maximize evaporation performance. In this study, the evaporation interface (location and thickness) is identified to quantify the interplay of optical and transport processes for guiding the rational design of materials and devices. We theoretically and experimentally demonstrate that an absorption coefficient of 400 m–1 pinning the interfacial location below the top surface leads to optimal efficiency with reduced radiation and convection losses. A multistage evaporation device based on the optimized interface properties in the transitional region was demonstrated showing an evaporation rate of 5.38 kg m–2 h–1, which is 12% higher than that in the interfacial region. In addition, the optimized device can operate stably with seawater for more than 10 h without salt crystallization.

中文翻译:

了解增强型太阳能蒸发装置的界面特性:从几何界面到物理界面

据报道,各种材料和设备配置可提高太阳能界面蒸发系统的蒸发效率,但尚未揭示如何定量评估最佳材料和设备以最大限度地提高蒸发性能。在这项研究中,确定了蒸发界面(位置和厚度)以量化光学和传输过程的相互作用,以指导材料和设备的合理设计。我们从理论上和实验上证明了 400 m –1的吸收系数将界面位置固定在顶面以下可实现最佳效率,同时减少辐射和对流损失。演示了基于过渡区域优化界面特性的多级蒸发装置,其蒸发速率为 5.38 kg m –2 h –1,比界面区域高 12%。此外,优化后的装置可以在海水中稳定运行 10 小时以上而不会出现盐结晶。
更新日期:2023-03-06
down
wechat
bug