当前位置:
X-MOL 学术
›
ACS Mater. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interfacial Defect Engineering Triggered by Single Atom Doping for Highly Efficient Electrocatalytic Nitrate Reduction to Ammonia
ACS Materials Letters ( IF 9.6 ) Pub Date : 2023-03-07 , DOI: 10.1021/acsmaterialslett.3c00007 Zhichao Wang 1 , Sisi Liu 2 , Xinying Zhao 2 , Mengfan Wang 2 , Lifang Zhang 3 , Tao Qian 3 , Jie Xiong 1 , Chengtao Yang 1 , Chenglin Yan 2
ACS Materials Letters ( IF 9.6 ) Pub Date : 2023-03-07 , DOI: 10.1021/acsmaterialslett.3c00007 Zhichao Wang 1 , Sisi Liu 2 , Xinying Zhao 2 , Mengfan Wang 2 , Lifang Zhang 3 , Tao Qian 3 , Jie Xiong 1 , Chengtao Yang 1 , Chenglin Yan 2
Affiliation
Electrochemical reduction of nitrate (NO3RR), a widespread water pollutant, to high-valued ammonia is encouraging for sustainable artificial nutrient recycling and environmental-friendly pollution management. However, the limited available catalytic active sites and competitive hydrogen evolution make the catalytic performance still unsatisfactory. In this work, interfacial defect engineering via single atom doping was conducted to achieve highly efficient electrocatalytic NO3RR. Upon introduction of isolated Fe atoms, abundant oxygen vacancies are generated over atomic interface of TiO2, and the induced charge redistribution triggers the formation of considerable active sites for nitrate reduction, which plays a crucial role in inhibiting the proton reduction and promoting the adsorption and activation of nitrate. As expected, single atom Fe modified TiO2 exhibits a maximum ammonia yield rate of 137.3 mg h–1 mgcat.–1 and a Faradaic efficiency of 92.3% at −1.4 V (vs RHE), which are among the best of all the reported values yet. This work provides valuable insights into the exploration of highly efficient electrocatalysts toward nitrate reduction through the heteroatom doping and defect engineering over atomic interface.
中文翻译:
单原子掺杂引发的界面缺陷工程高效电催化硝酸盐还原制氨
将广泛存在的水污染物硝酸盐 (NO 3 RR) 电化学还原为高价值的氨,对于可持续的人工养分回收和环境友好型污染管理来说是令人鼓舞的。然而,有限的可用催化活性位点和竞争性析氢使得催化性能仍然不能令人满意。在这项工作中,通过单原子掺杂进行了界面缺陷工程,以实现高效的电催化 NO 3 RR。在引入孤立的Fe原子后,在TiO 2的原子界面上产生了丰富的氧空位,并且诱导电荷重新分布引发大量硝酸盐还原活性位点的形成,这在抑制质子还原和促进硝酸盐的吸附和活化方面起着至关重要的作用。正如预期的那样,单原子 Fe 修饰的 TiO 2表现出 137.3 mg h –1 mg cat的最大氨产率。–1和 -1.4 V(相对于 RHE)时的法拉第效率为 92.3%,这是迄今为止所有报告值中最好的。这项工作为通过原子界面上的杂原子掺杂和缺陷工程探索高效电催化剂还原硝酸盐提供了有价值的见解。
更新日期:2023-03-07
中文翻译:
单原子掺杂引发的界面缺陷工程高效电催化硝酸盐还原制氨
将广泛存在的水污染物硝酸盐 (NO 3 RR) 电化学还原为高价值的氨,对于可持续的人工养分回收和环境友好型污染管理来说是令人鼓舞的。然而,有限的可用催化活性位点和竞争性析氢使得催化性能仍然不能令人满意。在这项工作中,通过单原子掺杂进行了界面缺陷工程,以实现高效的电催化 NO 3 RR。在引入孤立的Fe原子后,在TiO 2的原子界面上产生了丰富的氧空位,并且诱导电荷重新分布引发大量硝酸盐还原活性位点的形成,这在抑制质子还原和促进硝酸盐的吸附和活化方面起着至关重要的作用。正如预期的那样,单原子 Fe 修饰的 TiO 2表现出 137.3 mg h –1 mg cat的最大氨产率。–1和 -1.4 V(相对于 RHE)时的法拉第效率为 92.3%,这是迄今为止所有报告值中最好的。这项工作为通过原子界面上的杂原子掺杂和缺陷工程探索高效电催化剂还原硝酸盐提供了有价值的见解。