当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hierarchically interlocked helical conductive yarn enables ultra-stretchable electronics and smart fabrics
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2023-03-07 , DOI: 10.1016/j.cej.2023.142279
Wenxiao Zhang , Jinlei Miao , Mingwei Tian , Xueji Zhang , Tingting Fan , Lijun Qu

Simultaneously achieving high mechanical elasticity and electrical conductivity is essentially required for wearable electronics and smart fabrics. However, great challenges still remain to achieve high electrical conductance under large mechanical deformations due to the “trade-off” effect between them. Herein, inspired by curling structure of climbing plants, hierarchically interlocked helical conductive yarn for ultra-stretchable electronics and smart fabrics was developed, via over-twisting silver nanowires (AgNWs)/MXene multi-dimensional synergistic conductive networks that hierarchically entangled with elastic thermoplastic polyurethanes (TPU) nanofiber networks. High-aspect-ratio 1D AgNWs bridged 2D MXene nanosheets into synergistic interconnected conductive network while interlocked with elastic 3D TPU nanofiber skeleton. Unique hierarchically interlocking effect between highly conductive networks and highly elastic nanofiber networks during the twisting process induced helical conductive yarn simultaneously exhibits excellent mechanical stretchability and electrical conductivity. Excellent intrinsic elasticity of TPU macromolecular chains coupled with its hierarchically helical structure enables the conductive yarn exhibits excellent mechanical stretchability. While the hierarchically interlocked conductive structure ensures the stretchable yarn possess high electrical conductivity which could resist large mechanical deformations during stretching process. The hierarchically interlocked helical conductive yarn could still exhibit high electrical conductivity (1.12 × 10 S/m) even under large mechanical deformations (300%), which effectively avoid the “trade-off” effect. Moreover, the ultra-stretchable conductive yarn exhibits smart responsiveness to multi stimuli (mechanical/electron/light). The helical strain sensor has excellent electromechanical performance with stable GF (1.7) in the 600%–1000% linear range. The hierarchically interlocked helical conductive yarn holds great promise for ultra-stretchable electronics and smart fabrics.

中文翻译:


分层互锁螺旋导电纱线可实现超拉伸电子产品和智能织物



可穿戴电子产品和智能织物本质上需要同时实现高机械弹性和导电性。然而,由于它们之间的“权衡”效应,在大机械变形下实现高电导仍然存在巨大挑战。在此,受攀缘植物卷曲结构的启发,通过与弹性热塑性聚氨酯分层缠绕的过度扭曲银纳米线(AgNW)/MXene多维协同导电网络,开发了用于超拉伸电子产品和智能织物的分层互锁螺旋导电纱线。 (TPU)纳米纤维网络。高纵横比的 1D AgNW 将 2D MXene 纳米片桥接成协同互连的导电网络,同时与弹性 3D TPU 纳米纤维骨架互锁。在加捻过程中,高导电网络和高弹性纳米纤维网络之间独特的分层互锁效应导致螺旋导电纱同时表现出优异的机械拉伸性和导电性。 TPU大分子链优异的固有弹性加上其分级螺旋结构使导电纱表现出优异的机械拉伸性能。而分层互锁的导电结构确保了可拉伸纱线具有高导电性,可以在拉伸过程中抵抗较大的机械变形。即使在大机械变形(300%)下,分层互锁螺旋导电纱仍能表现出高导电率(1.12×10S/m),有效避免了“权衡”效应。 此外,超拉伸导电纱线对多种刺激(机械/电子/光)表现出智能响应能力。螺旋应变传感器具有优异的机电性能,在 600%–1000% 线性范围内具有稳定的 GF (1.7)。分层互锁螺旋导电纱线为超拉伸电子产品和智能织物带来了巨大的希望。
更新日期:2023-03-07
down
wechat
bug