当前位置: X-MOL 学术J. of Cardiovasc. Trans. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biomechanical Impact of Pathogenic MYBPC3 Truncation Variant Revealed by Dynamically Tuning In Vitro Afterload
Journal of Cardiovascular Translational Research ( IF 2.4 ) Pub Date : 2023-03-06 , DOI: 10.1007/s12265-022-10348-4
Abhinay Ramachandran 1 , Carissa E Livingston 1 , Alexia Vite 2 , Elise A Corbin 3, 4, 5 , Alexander I Bennett 6 , Kevin T Turner 6 , Benjamin W Lee 2 , Chi Keung Lam 7, 8 , Joseph C Wu 7 , Kenneth B Margulies 1, 2
Affiliation  

Engineered cardiac microtissues were fabricated using pluripotent stem cells with a hypertrophic cardiomyopathy associated c. 2827 C>T; p.R943x truncation variant in myosin binding protein C (MYBPC3+/−). Microtissues were mounted on iron-incorporated cantilevers, allowing manipulations of cantilever stiffness using magnets, enabling examination of how in vitro afterload affects contractility. MYPBC3+/− microtissues developed augmented force, work, and power when cultured with increased in vitro afterload when compared with isogenic controls in which the MYBPC3 mutation had been corrected (MYPBC3+/+(ed)), but weaker contractility when cultured with lower in vitro afterload. After initial tissue maturation, MYPBC3+/− CMTs exhibited increased force, work, and power in response to both acute and sustained increases of in vitro afterload. Together, these studies demonstrate that extrinsic biomechanical challenges potentiate genetically-driven intrinsic increases in contractility that may contribute to clinical disease progression in patients with HCM due to hypercontractile MYBPC3 variants.



中文翻译:


通过体外后负荷动态调节揭示致病性 MYBPC3 截短变体的生物力学影响



使用与c相关的肥厚性心肌病的多能干细胞制造工程心脏微组织。第2827章肌球蛋白结合蛋白 C (MYBPC3 +/- ) 中的 p.R943x 截短变体。将微组织安装在掺铁悬臂上,允许使用磁铁操纵悬臂刚度,从而能够检查体外后负荷如何影响收缩性。与 MYBPC3 突变已得到纠正的等基因对照相比,当体外后负荷增加时,MYPBC3 +/-微组织产生增强的力、做功和功率(MYPBC3 +/- (ed)),但在较低培养条件下培养时收缩性较弱。体外后负荷。初始组织成熟后,MYPBC3 +/- CMT 表现出增加的力、功和功率,以响应体外后负荷的急剧和持续增加。总之,这些研究表明,外在生物力学挑战会增强基因驱动的内在收缩性增加,这可能会导致由于 MYBPC3 过度收缩变异导致的 HCM 患者的临床疾病进展。

更新日期:2023-03-06
down
wechat
bug