当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Promoting Electrocatalytic Hydrogenation of Oxalic Acid to Glycolic Acid via an Al3+ Ion Adsorption Strategy Coupled with Ethylene Glycol Oxidation
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-03-03 , DOI: 10.1021/acsami.3c00292 Leilei Hao 1 , Qinghui Ren 1 , Jiangrong Yang 1 , Lan Luo 1 , Yue Ren 1 , Xinyue Guo 1 , Hua Zhou 1 , Ming Xu 1 , Xianggui Kong 1 , Zhenhua Li 1, 2 , Mingfei Shao 1, 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2023-03-03 , DOI: 10.1021/acsami.3c00292 Leilei Hao 1 , Qinghui Ren 1 , Jiangrong Yang 1 , Lan Luo 1 , Yue Ren 1 , Xinyue Guo 1 , Hua Zhou 1 , Ming Xu 1 , Xianggui Kong 1 , Zhenhua Li 1, 2 , Mingfei Shao 1, 2
Affiliation
Electrocatalytic hydrogenation (ECH) of oxalic acid (OX) to produce glycolic acid (GA), an important building block of biodegradable polymers as well as application in various branches of chemistry, has attracted extensive attention in the industry, while it still encounters challenges of low reaction rate and selectivity. Herein, we reported a cation adsorption strategy to realize the efficient ECH of OX to GA by adsorbing Al3+ ions on an anatase titanium dioxide (TiO2) nanosheet array, achieving 2-fold enhanced GA productivity (1.3 vs 0.65 mmol cm–2 h–1) with higher Faradaic efficiency (FE) (85 vs 69%) at −0.74 V vs RHE. We reveal that the Al3+ adatoms on TiO2 both act as electrophilic adsorption sites to enhance the carbonyl (C═O) adsorption of OX and glyoxylic acid (intermediate) and also promote the generation of reactive hydrogen (H*) on TiO2, thus promoting the reaction rate. This strategy is demonstrated effective for different carboxylic acids. Furthermore, we realized the coproduction of GA at the bipolar of a H-type cell by pairing ECH of OX (at cathode) and electrooxidation of ethylene glycol (at anode), demonstrating an economical manner with maximum electron economy.
中文翻译:
通过 Al3+ 离子吸附策略结合乙二醇氧化促进草酸电催化氢化为乙醇酸
草酸(OX)的电催化氢化(ECH)生产乙醇酸(GA)是生物可降解聚合物的重要组成部分,在化学的各个分支中都有应用,引起了工业界的广泛关注,但仍面临挑战低反应速率和选择性。在此,我们报道了一种阳离子吸附策略,通过在锐钛矿二氧化钛 (TiO 2 ) 纳米片阵列上吸附 Al 3+离子,实现 OX 高效 ECH 转化为 GA,实现 GA 生产率提高 2 倍(1.3 vs 0.65 mmol cm –2 h –1 ) 在 −0.74 V vs RHE 时具有更高的法拉第效率 (FE)(85 对 69%)。我们揭示了TiO 2上的Al 3+吸附原子两者均作为亲电吸附位点,增强OX和乙醛酸(中间体)的羰基(C=O)吸附,同时促进TiO 2上活性氢(H*)的生成,从而提高反应速率。该策略被证明对不同的羧酸有效。此外,我们通过将 OX 的 ECH(阴极)和乙二醇的电氧化(阳极)配对,在 H 型电池的双极实现了 GA 的联合生产,展示了一种具有最大电子经济性的经济方式。
更新日期:2023-03-03
中文翻译:
通过 Al3+ 离子吸附策略结合乙二醇氧化促进草酸电催化氢化为乙醇酸
草酸(OX)的电催化氢化(ECH)生产乙醇酸(GA)是生物可降解聚合物的重要组成部分,在化学的各个分支中都有应用,引起了工业界的广泛关注,但仍面临挑战低反应速率和选择性。在此,我们报道了一种阳离子吸附策略,通过在锐钛矿二氧化钛 (TiO 2 ) 纳米片阵列上吸附 Al 3+离子,实现 OX 高效 ECH 转化为 GA,实现 GA 生产率提高 2 倍(1.3 vs 0.65 mmol cm –2 h –1 ) 在 −0.74 V vs RHE 时具有更高的法拉第效率 (FE)(85 对 69%)。我们揭示了TiO 2上的Al 3+吸附原子两者均作为亲电吸附位点,增强OX和乙醛酸(中间体)的羰基(C=O)吸附,同时促进TiO 2上活性氢(H*)的生成,从而提高反应速率。该策略被证明对不同的羧酸有效。此外,我们通过将 OX 的 ECH(阴极)和乙二醇的电氧化(阳极)配对,在 H 型电池的双极实现了 GA 的联合生产,展示了一种具有最大电子经济性的经济方式。