Energy Storage Materials ( IF 18.9 ) Pub Date : 2023-02-26 , DOI: 10.1016/j.ensm.2023.02.036 Baolin Wu , Chunguang Chen , Luc H.J. Raijmakers , Jin Liu , Dmitri L. Danilov , Rüdiger-A. Eichel , Peter H.L. Notten
Li-metal battery systems are attractive for next-generation high-energy batteries due to their high theoretical specific capacity and Li-metal's low redox potential. Anode-free Li-metal batteries (AFLBs) have a higher energy density than conventional Li-metal batteries because the anode material is absent in the pristine state. An additional advantage is that the battery production costs are relatively low due to simplified anode coating processing, which makes AFLBs favorable for large-scale industrial production. Despite these advantages, commercializing AFLBs remains challenging because of the high reactivity of Li-metal and dendrite-growth issues at the anode side. The chemical and physical properties of solid-electrolyte interphase (SEI) formed at Li-metal anodes determine the Li-ion transport kinetics, Li-metal deposition behavior, and overall cycling performance. The key to resolving these issues is to grow a homogeneous Li-metal and design a stable SEI. Many approaches, such as electrolyte optimization and artificial layers design, have been developed to guide a uniform Li-metal growth and form a stable SEI, facilitating rapid Li-ion transport and suppressing Li-dendrite growth and other undesirable side reactions. An overview of these discoveries and developments in Li-growth and SEI engineering and insights into the intrinsic mechanisms of battery performance, presented in this review, is, therefore, of great interest to the battery research community.
中文翻译:
无阳极锂金属可充电电池的锂生长和 SEI 工程:当前进展回顾
锂金属电池系统由于其高理论比容量和锂金属的低氧化还原电位而对下一代高能电池具有吸引力。无阳极锂金属电池 (AFLB) 具有比传统锂金属电池更高的能量密度,因为在原始状态下不存在阳极材料。另一个优势是由于简化了阳极涂层工艺,电池生产成本相对较低,这使得 AFLB 有利于大规模工业生产。尽管有这些优势,但由于锂金属的高反应性和阳极侧的枝晶生长问题,AFLB 的商业化仍然具有挑战性。在锂金属负极处形成的固体电解质界面 (SEI) 的化学和物理性质决定了锂离子传输动力学、锂金属沉积行为、和整体循环性能。解决这些问题的关键是生长均匀的锂金属并设计稳定的 SEI。已经开发了许多方法,例如电解质优化和人工层设计,以引导锂金属均匀生长并形成稳定的 SEI,促进锂离子快速传输并抑制锂枝晶生长和其他不良副反应。因此,本综述中对锂生长和 SEI 工程中的这些发现和发展的概述以及对电池性能内在机制的见解,对电池研究界非常感兴趣。已开发用于引导锂金属均匀生长并形成稳定的 SEI,促进锂离子快速传输并抑制锂枝晶生长和其他不良副反应。因此,本综述中对锂生长和 SEI 工程中的这些发现和发展的概述以及对电池性能内在机制的见解,对电池研究界非常感兴趣。已开发用于引导锂金属均匀生长并形成稳定的 SEI,促进锂离子快速传输并抑制锂枝晶生长和其他不良副反应。因此,本综述中对锂生长和 SEI 工程中的这些发现和发展的概述以及对电池性能内在机制的见解,对电池研究界非常感兴趣。