当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2023-02-28 , DOI: 10.1021/jacs.2c12348
Noriyuki Uchida 1 , Yunosuke Ryu 1 , Yuichiro Takagi 1 , Ken Yoshizawa 1 , Kotono Suzuki 1 , Yasutaka Anraku 2 , Itsuki Ajioka 3, 4 , Naofumi Shimokawa 5 , Masahiro Takagi 5 , Norihisa Hoshino 6 , Tomoyuki Akutagawa 6 , Teruhiko Matsubara 7 , Toshinori Sato 7 , Yuji Higuchi 8 , Hiroaki Ito 9 , Masamune Morita 10 , Takahiro Muraoka 1, 4, 11
Affiliation  

Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities.

中文翻译:

由膜扩张分子机器介导的内吞作用样囊泡裂变使病毒封装用于体内递送

生物膜由膜相关蛋白机制功能化。膜相关运输过程,如内吞作用,代表了由膜变形蛋白机器介导的基本和普遍功能,小生物分子甚至微米大小的物质可以通过封装进入膜囊泡。尽管已经报道了诱导动态膜变形的合成分子,但仍然严重缺乏一种使膜变形与物质结合和运输相结合的膜运输分子方法。在这里,我们开发了一种两亲分子机器,其中包含位于磷脂膜中的光敏重氮辛核 (AzoMEx)。光照射后,AzoMEx 扩张脂质体膜,使囊泡在膜变形过程中偏向由外向内裂变。货物成分,包括与 AzoMEx 相互作用的微米大小的 M13 噬菌体,通过由外向内裂变有效地掺入囊泡中。封装的 M13 噬菌体暂时受到外部环境的保护,因此在给药后通过血液分布到全身期间保持生物活性。这项研究开发了一种分子方法,使用合成分子机制进行膜功能化,通过囊泡封装运输微米级物质和物体。
更新日期:2023-02-28
down
wechat
bug