Nature Communications ( IF 14.7 ) Pub Date : 2023-02-27 , DOI: 10.1038/s41467-023-36873-7 Marcus Ossiander 1 , Maryna Leonidivna Meretska 1 , Sarah Rourke 1, 2 , Christina Spägele 1 , Xinghui Yin 1 , Ileana-Cristina Benea-Chelmus 1, 3 , Federico Capasso 1
Cavities concentrate light and enhance its interaction with matter. Confining to microscopic volumes is necessary for many applications but space constraints in such cavities limit the design freedom. Here we demonstrate stable optical microcavities by counteracting the phase evolution of the cavity modes using an amorphous Silicon metasurface as cavity end mirror. Careful design allows us to limit the metasurface scattering losses at telecom wavelengths to less than 2% and using a distributed Bragg reflector as metasurface substrate ensures high reflectivity. Our demonstration experimentally achieves telecom-wavelength microcavities with quality factors of up to 4600, spectral resonance linewidths below 0.4 nm, and mode volumes below \(2.7{\lambda }^{3}\). The method introduces freedom to stabilize modes with arbitrary transverse intensity profiles and to design cavity-enhanced hologram modes. Our approach introduces the nanoscopic light control capabilities of dielectric metasurfaces to cavity electrodynamics and is industrially scalable using semiconductor manufacturing processes.
中文翻译:
超表面稳定光学微腔
空腔会聚光并增强其与物质的相互作用。对于许多应用来说,限制在微观体积是必要的,但这种空腔中的空间限制限制了设计自由度。在这里,我们通过使用非晶硅超表面作为腔端镜来抵消腔模式的相演化来展示稳定的光学微腔。精心设计使我们能够将电信波长的超表面散射损失限制在 2% 以下,并使用分布式布拉格反射器作为超表面基板确保高反射率。我们的演示通过实验实现了品质因数高达 4600、光谱共振线宽低于 0.4 nm 以及模式体积低于\(2.7{\lambda }^{3}\) 的电信波长微腔. 该方法引入了自由来稳定具有任意横向强度分布的模式和设计腔增强全息图模式。我们的方法将介电超表面的纳米级光控制能力引入腔电动力学,并且可以使用半导体制造工艺进行工业扩展。