Nature Communications ( IF 14.7 ) Pub Date : 2023-02-27 , DOI: 10.1038/s41467-023-36848-8 Changwei Zhao 1 , Yanjun Zhang 1 , Yuewen Jia 2 , Bojun Li 3 , Wenjing Tang 1 , Chuning Shang 2 , Rui Mo 1 , Pei Li 4 , Shaomin Liu 4 , Sui Zhang 2
Fast permeation and effective solute-solute separation provide the opportunities for sustainable water treatment, but they are hindered by ineffective membranes. We present here the construction of a nanofiltration membrane with fast permeation, high rejection, and precise Cl-/SO42- separation by spatial and temporal control of interfacial polymerization via graphitic carbon nitride (g-C3N4). The g-C3N4 nanosheet binds preferentially with piperazine and tiles the water-hexane interface as revealed by molecular dynamics studies, thus lowering the diffusion rate of PIP by one order of magnitude and restricting its diffusion pathways towards the hexane phase. As a result, membranes with nanoscale ordered hollow structure are created. Transport mechanism across the structure is clarified using computational fluid dynamics simulation. Increased surface area, lower thickness, and a hollow ordered structure are identified as the key contributors to the water permeance of 105 L m2·h−1·bar−1 with a Na2SO4 rejection of 99.4% and a Cl-/SO42- selectivity of 130, which is superior to state-of-the-art NF membranes. Our approach for tuning the membrane microstructure enables the development of ultra-permeability and excellent selectivity for ion-ion separation, water purification, desalination, and organics removal.
中文翻译:
具有纳米级有序结构的聚酰胺膜,可实现快速渗透和高选择性离子-离子分离
快速渗透和有效的溶质-溶质分离为可持续水处理提供了机会,但它们受到无效膜的阻碍。我们在这里展示了通过石墨氮化碳 (gC 3 N 4 )界面聚合的空间和时间控制,构建具有快速渗透、高截留和精确 Cl - /SO 4 2-分离的纳滤膜。gC 3 N 4分子动力学研究表明,纳米片优先与哌嗪结合并平铺水-己烷界面,从而将 PIP 的扩散速率降低一个数量级,并限制其向己烷相的扩散途径。结果,产生了具有纳米级有序中空结构的膜。使用计算流体动力学模拟阐明了跨结构的传输机制。表面积增加、厚度降低和中空有序结构被确定为 105 L m 2 ·h −1 ·bar −1透水率的主要贡献者,Na 2 SO 4截留率为 99.4%,Cl - /所以4 2-选择性为 130,优于最先进的 NF 膜。我们调整膜微观结构的方法能够为离子-离子分离、水净化、脱盐和有机物去除开发超渗透性和出色的选择性。