Science Bulletin ( IF 18.8 ) Pub Date : 2023-02-24 , DOI: 10.1016/j.scib.2023.02.031
Xinyue Liu 1 , Xinyi Yan 1 , Wenyuan Liu 1 , Qingyun Yan 1 , Mingyang Xing 2
![]() |
Coexistence of radical and nonradical reaction pathways during advanced oxidation processes (AOPs) makes it challenging to obtain flexible regulation of high efficiency and selectivity for the requirement of diverse degradation. Herein, a series of Fe3O4/MoOxSy samples coupling peroxymonosulfate (PMS) systems enabled the switching of radical and nonradical pathways through the inclusion of defects and adjustment of Mo4+/Mo6+ ratios. The silicon cladding operation introduced defects by disrupting the original lattice of Fe3O4 and MoOxS. Meanwhile, the abundance of defective electrons increased the amount of Mo4+ on the catalyst surface, promoting PMS decomposition with a maximum k value up to 1.530 min−1 and a maximum free radical contribution of 81.33%. The Mo4+/Mo6+ ratio in the catalyst was similarly altered by different Fe contents, and Mo6+ contributed to the production of 1O2, allowing the whole system to attain a nonradical species–dominated (68.26%) pathway. The radical species-dominated system has a high chemical oxygen demand (COD) removal rate for actual wastewater treatment. Conversely, the nonradical species-dominated system can considerably improve the biodegradability of wastewater (biochemical oxygen demand (BOD)/COD = 0.997). The tunable hybrid reaction pathways will expand the targeted applications of AOPs.
中文翻译:

在类芬顿反应中通过 Fe3O4/MoOxSy 的表面缺陷切换自由基和非自由基途径
高级氧化过程 (AOP) 中自由基和非自由基反应途径的共存使得针对不同降解的要求获得高效和选择性的灵活调节具有挑战性。在此,一系列耦合过氧一硫酸盐 (PMS) 系统的 Fe 3 O 4 /MoO x S y样品通过包含缺陷和调整 Mo 4+ /Mo 6+比率实现了自由基和非自由基途径的转换。硅包覆操作通过破坏 Fe 3 O 4和 MoO x的原始晶格引入了缺陷S.同时,缺陷电子的丰度增加了催化剂表面Mo 4+的量,促进了PMS分解,最大k值高达1.530 min -1,最大自由基贡献为81.33%。催化剂中的Mo 4+ /Mo 6+比例同样会随着 Fe 含量的不同而发生变化,并且 Mo 6+有助于1 O 2的产生,从而使整个系统达到非自由基物种主导 (68.26%) 的途径。自由基物种主导体系对实际废水处理具有较高的化学需氧量(COD)去除率. 相反,非自由基物种主导系统可以显着提高废水的可生物降解性(生化需氧量 (BOD)/COD = 0.997)。可调混合反应途径将扩大 AOPs 的目标应用。