Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhanced OER Performance and Dynamic Transition of Surface Reconstruction in LaNiO3 Thin Films with Nanoparticles Decoration
Advanced Science ( IF 14.3 ) Pub Date : 2023-02-24 , DOI: 10.1002/advs.202207128 Huan Liu 1, 2 , Rongrong Xie 3 , Qixiang Wang 1, 2 , Jiale Han 1 , Yue Han 1, 2 , Jie Wang 1, 2 , Hong Fang 1, 2 , Ji Qi 2 , Meng Ding 3 , Weixiao Ji 1 , Bin He 1 , Weiming Lü 1, 2
Advanced Science ( IF 14.3 ) Pub Date : 2023-02-24 , DOI: 10.1002/advs.202207128 Huan Liu 1, 2 , Rongrong Xie 3 , Qixiang Wang 1, 2 , Jiale Han 1 , Yue Han 1, 2 , Jie Wang 1, 2 , Hong Fang 1, 2 , Ji Qi 2 , Meng Ding 3 , Weixiao Ji 1 , Bin He 1 , Weiming Lü 1, 2
Affiliation
In an electrocatalytic process, the cognition of the active phase in a catalyst has been regarded as one of the most vital issues, which not only boosts the fundamental understanding of the reaction procedure but also guides the engineering and design for further promising catalysts. Here, based on the oxygen evolution reaction (OER), the stepwise evolution of the dominant active phase is demonstrated in the LaNiO3 (LNO) catalyst once the single-crystal thin film is decorated by LNO nanoparticles. It is found that the OER performance can be dramatically improved by this decoration, and the catalytic current density at 1.65 V can be enhanced by ≈1000% via ≈109 cm−2 nanoparticle adhesion after extracting the contribution of surface enlargement. Most importantly, a transition of the active phase from LNO to NiOOH via surface reconstruction with the density of LNO nanoparticles is demonstrated. Several mechanisms in terms of this active phase transition are discussed involving lattice orientation-induced change of the surface energy profile, the lattice oxygen participation, and the A/B-site ions leaching during OER cycles. This study suggests that the active phases in transition metal-based OER catalysts can transform with morphology, which should be corresponding to distinct engineering strategies.
中文翻译:
纳米颗粒修饰的 LaNiO3 薄膜中增强的 OER 性能和表面重构的动态转变
在电催化过程中,对催化剂活性相的认识被认为是最重要的问题之一,这不仅促进了对反应过程的基本理解,而且指导了进一步有前途的催化剂的工程和设计。在此,基于析氧反应(OER),一旦单晶薄膜被LNO纳米颗粒修饰,LaNiO 3 (LNO)催化剂中的主要活性相就会逐步演化。结果发现,这种修饰可以显着提高OER性能,并且在提取表面扩大的贡献后,通过约10 9 cm -2纳米粒子的粘附,1.65 V下的催化电流密度可以提高约1000%。最重要的是,通过利用 LNO 纳米颗粒的密度进行表面重建,活性相从 LNO 转变为 NiOOH。讨论了这种活性相变的几种机制,包括晶格取向引起的表面能分布变化、晶格氧的参与以及 OER 循环期间 A/B 位离子的浸出。这项研究表明,过渡金属基 OER 催化剂中的活性相可以随形态发生转变,这应该与不同的工程策略相对应。
更新日期:2023-02-24
中文翻译:
纳米颗粒修饰的 LaNiO3 薄膜中增强的 OER 性能和表面重构的动态转变
在电催化过程中,对催化剂活性相的认识被认为是最重要的问题之一,这不仅促进了对反应过程的基本理解,而且指导了进一步有前途的催化剂的工程和设计。在此,基于析氧反应(OER),一旦单晶薄膜被LNO纳米颗粒修饰,LaNiO 3 (LNO)催化剂中的主要活性相就会逐步演化。结果发现,这种修饰可以显着提高OER性能,并且在提取表面扩大的贡献后,通过约10 9 cm -2纳米粒子的粘附,1.65 V下的催化电流密度可以提高约1000%。最重要的是,通过利用 LNO 纳米颗粒的密度进行表面重建,活性相从 LNO 转变为 NiOOH。讨论了这种活性相变的几种机制,包括晶格取向引起的表面能分布变化、晶格氧的参与以及 OER 循环期间 A/B 位离子的浸出。这项研究表明,过渡金属基 OER 催化剂中的活性相可以随形态发生转变,这应该与不同的工程策略相对应。