当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In Liquido Computation with Electrochemical Transistors and Mixed Conductors for Intelligent Bioelectronics
Advanced Materials ( IF 27.4 ) Pub Date : 2023-02-22 , DOI: 10.1002/adma.202209516
Matteo Cucchi 1, 2 , Daniela Parker 3 , Eleni Stavrinidou 3 , Paschalis Gkoupidenis 4 , Hans Kleemann 2
Affiliation  

Next-generation implantable computational devices require long-term-stable electronic components capable of operating in, and interacting with, electrolytic surroundings without being damaged. Organic electrochemical transistors (OECTs) emerged as fitting candidates. However, while single devices feature impressive figures of merit, integrated circuits (ICs) immersed in common electrolytes are hard to realize using electrochemical transistors, and there is no clear path forward for optimal top-down circuit design and high-density integration. The simple observation that two OECTs immersed in the same electrolytic medium will inevitably interact hampers their implementation in complex circuitry. The electrolyte's ionic conductivity connects all the devices in the liquid, producing unwanted and often unforeseeable dynamics. Minimizing or harnessing this crosstalk has been the focus of very recent studies. Herein, the main challenges, trends, and opportunities for realizing OECT-based circuitry in a liquid environment that could circumnavigate the hard limits of engineering and human physiology, are discussed. The most successful approaches in autonomous bioelectronics and information processing are analyzed. Elaborating on the strategies to circumvent and harness device crosstalk proves that platforms capable of complex computation and even machine learning (ML) can be realized in liquido using mixed ionic–electronic conductors (OMIECs).

中文翻译:

用于智能生物电子学的电化学晶体管和混合导体的液相计算

下一代植入式计算设备需要长期稳定的电子元件,能够在电解环境中运行并与之相互作用而不会损坏。有机电化学晶体管 (OECT) 成为合适的候选者。然而,虽然单个器件具有令人印象深刻的品质因数,但浸入普通电解质中的集成电路 (IC) 很难使用电化学晶体管实现,而且优化自上而下的电路设计和高密度集成也没有明确的前进道路。浸入同一电解介质中的两个 OECT 将不可避免地相互作用这一简单观察阻碍了它们在复杂电路中的实施。电解质的离子电导率连接液体中的所有设备,产生不需要的且通常不可预见的动态。最小化或利用这种串扰一直是最近研究的重点。本文讨论了在液体环境中实现基于 OECT 的电路的主要挑战、趋势和机遇,这些电路可以绕过工程和人体生理学的硬限制。分析了自主生物电子学和信息处理中最成功的方法。详细阐述规避和利用设备串扰的策略证明,可以使用混合离子电子导体 (OMIEC) 在 liquido 中实现能够进行复杂计算甚至机器学习 (ML) 的平台。讨论了在液体环境中实现基于 OECT 的电路的机会,这些电路可以绕过工程和人体生理学的硬限制。分析了自主生物电子学和信息处理中最成功的方法。详细阐述规避和利用设备串扰的策略证明,可以使用混合离子电子导体 (OMIEC) 在 liquido 中实现能够进行复杂计算甚至机器学习 (ML) 的平台。讨论了在液体环境中实现基于 OECT 的电路的机会,这些电路可以绕过工程和人体生理学的硬限制。分析了自主生物电子学和信息处理中最成功的方法。详细阐述规避和利用设备串扰的策略证明,可以使用混合离子电子导体 (OMIEC) 在 liquido 中实现能够进行复杂计算甚至机器学习 (ML) 的平台。
更新日期:2023-02-22
down
wechat
bug