Nature Communications ( IF 14.7 ) Pub Date : 2023-02-23 , DOI: 10.1038/s41467-023-36726-3 Yuyang Pan 1 , Huiyan Zhang 1 , Bowen Zhang 1 , Feng Gong 1 , Jianyong Feng 2 , Huiting Huang 2 , Srinivas Vanka 3 , Ronglei Fan 4 , Qi Cao 1 , Mingrong Shen 4 , Zhaosheng Li 2 , Zhigang Zou 2 , Rui Xiao 1 , Sheng Chu 1
The sustainable production of chemicals and fuels from abundant solar energy and renewable carbon sources provides a promising route to reduce climate-changing CO2 emissions and our dependence on fossil resources. Here, we demonstrate solar-powered formate production from readily available biomass wastes and CO2 feedstocks via photoelectrochemistry. Non-precious NiOOH/α-Fe2O3 and Bi/GaN/Si wafer were used as photoanode and photocathode, respectively. Concurrent photoanodic biomass oxidation and photocathodic CO2 reduction towards formate with high Faradaic efficiencies over 85% were achieved at both photoelectrodes. The integrated biomass-CO2 photoelectrolysis system reduces the cell voltage by 32% due to the thermodynamically favorable biomass oxidation over conventional water oxidation. Moreover, we show solar-driven formate production with a record-high yield of 23.3 μmol cm−2 h−1 as well as high robustness using the hybrid photoelectrode system. The present work opens opportunities for sustainable chemical and fuel production using abundant and renewable resources on earth—sunlight, biomass and CO2.
中文翻译:
光电化学电池中来自阳光、生物质和二氧化碳的可再生甲酸盐
利用丰富的太阳能和可再生碳源可持续生产化学品和燃料,为减少气候变化的 CO 2排放和我们对化石资源的依赖提供了一条有前途的途径。在这里,我们展示了通过光电化学利用现成的生物质废物和 CO 2原料进行太阳能甲酸盐生产。非贵金属NiOOH/α-Fe 2 O 3和Bi/GaN/Si晶片分别用作光电阳极和光电阴极。在两个光电极上都实现了同时进行光阳极生物质氧化和光阴极 CO 2还原生成甲酸盐,法拉第效率超过 85%。综合生物质-CO 2由于热力学上比传统水氧化更有利的生物质氧化,光电系统将电池电压降低了 32%。此外,我们展示了太阳能驱动的甲酸盐生产,其产率为创纪录的 23.3 μmol cm -2 h -1,并且使用混合光电极系统具有高稳健性。目前的工作为使用地球上丰富的可再生资源(阳光、生物质和 CO 2 )进行可持续化学品和燃料生产提供了机会。