当前位置:
X-MOL 学术
›
Energy Environ. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Self-Adaptive and Electric Field-Driven Protective Layer with Anchored Lithium Deposition Enable Stable Lithium Metal Anode
Energy & Environmental Materials ( IF 13.0 ) Pub Date : 2023-02-12 , DOI: 10.1002/eem2.12599 Ting Chen 1 , Luchao Yue 1 , Guoqiang Shu 1 , Qing Yang 1 , Dong Wang 1 , Ruoyang Wang 1 , Xianyan Qiao 1 , Yan Sun 2 , Benhe Zhong 1 , Zhenguo Wu 1 , Xiaodong Guo 1, 3, 4
Energy & Environmental Materials ( IF 13.0 ) Pub Date : 2023-02-12 , DOI: 10.1002/eem2.12599 Ting Chen 1 , Luchao Yue 1 , Guoqiang Shu 1 , Qing Yang 1 , Dong Wang 1 , Ruoyang Wang 1 , Xianyan Qiao 1 , Yan Sun 2 , Benhe Zhong 1 , Zhenguo Wu 1 , Xiaodong Guo 1, 3, 4
Affiliation
Lithium metal battery has great development potential because of its lowest electrochemical potential and highest theoretical capacity. However, the uneven deposition of Li+ flux in the process of deposition and stripping induces the vigorous growth of lithium dendrites, which results in severely battery performance degradation and serious safety hazards. Here, the tetragonal BaTiO3 polarized by high voltage corona was used to build an artificial protective layer with uniform positive polarization direction, which enables uniform Li+ flux. In contrast to traditional strategies of using protective layer, which can guide the uniform deposition of lithium metal. The ferroelectric protective layer can accurately anchor the Li+ and achieve bottom deposition of lithium due to the automatic adjustment of the electric field. Simultaneously, the huge volume changes caused by Li+ migration change of the lithium metal anode during charging and discharging is functioned to excite the piezoelectric effect of the protective layer, and achieve seamless dynamic tuning of lithium deposition/stripping. This dynamic effect can accurately anchor and capture Li+. Finally, the layer-modified Li anode enables reversible Li plating/stripping over 1500 h at 1 mA cm−2 and 50 °C in symmetric cells. In addition, the assembled Li-S full cell exhibits over 300 cycles with N/P ≈ 1.35. This work provides a new perspective on the uniform Li+ flux at the Li-anode interface of the artificial protective layer.
中文翻译:
具有锚定锂沉积的自适应电场驱动保护层可实现稳定的锂金属阳极
锂金属电池因其最低的电化学势和最高的理论容量而具有巨大的发展潜力。然而,沉积和剥离过程中Li +助熔剂的沉积不均匀,导致锂枝晶的旺盛生长,导致电池性能严重下降,并存在严重的安全隐患。这里,采用高压电晕极化的四方BaTiO 3来构建具有均匀正极化方向的人工保护层,从而实现均匀的Li +通量。与使用保护层的传统策略相反,它可以引导锂金属的均匀沉积。铁电保护层由于电场的自动调节,可以精确锚定Li + ,实现锂的底部沉积。同时,充放电过程中金属锂负极Li +迁移变化引起的巨大体积变化,激发保护层的压电效应,实现锂沉积/剥离的无缝动态调节。这种动态效果可以准确地锚定和捕捉Li +。最后,层修饰的锂阳极能够在对称电池中在1 mA cm -2和50 °C下实现1500小时以上的可逆锂沉积/剥离。此外,组装的锂硫全电池表现出超过300次循环,N/P ≈ 1.35。这项工作为人工保护层锂阳极界面处的均匀Li +通量提供了新的视角。
更新日期:2023-02-12
中文翻译:
具有锚定锂沉积的自适应电场驱动保护层可实现稳定的锂金属阳极
锂金属电池因其最低的电化学势和最高的理论容量而具有巨大的发展潜力。然而,沉积和剥离过程中Li +助熔剂的沉积不均匀,导致锂枝晶的旺盛生长,导致电池性能严重下降,并存在严重的安全隐患。这里,采用高压电晕极化的四方BaTiO 3来构建具有均匀正极化方向的人工保护层,从而实现均匀的Li +通量。与使用保护层的传统策略相反,它可以引导锂金属的均匀沉积。铁电保护层由于电场的自动调节,可以精确锚定Li + ,实现锂的底部沉积。同时,充放电过程中金属锂负极Li +迁移变化引起的巨大体积变化,激发保护层的压电效应,实现锂沉积/剥离的无缝动态调节。这种动态效果可以准确地锚定和捕捉Li +。最后,层修饰的锂阳极能够在对称电池中在1 mA cm -2和50 °C下实现1500小时以上的可逆锂沉积/剥离。此外,组装的锂硫全电池表现出超过300次循环,N/P ≈ 1.35。这项工作为人工保护层锂阳极界面处的均匀Li +通量提供了新的视角。