当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High-Performance, Highly Stretchable, Flexible Moist-Electric Generators via Molecular Engineering of Hydrogels
Advanced Materials ( IF 27.4 ) Pub Date : 2023-02-22 , DOI: 10.1002/adma.202300398 Haotian Zhang 1 , Nan He 1 , Bingsen Wang 1 , Bin Ding 2 , Bo Jiang 1 , Dawei Tang 1 , Lin Li 1
Advanced Materials ( IF 27.4 ) Pub Date : 2023-02-22 , DOI: 10.1002/adma.202300398 Haotian Zhang 1 , Nan He 1 , Bingsen Wang 1 , Bin Ding 2 , Bo Jiang 1 , Dawei Tang 1 , Lin Li 1
Affiliation
Harvesting energy from ubiquitous moisture has emerged as a promising technology, offering opportunities to power wearable electronics. However, low current density and inadequate stretching limit their integration into self-powered wearables. Herein, a high-performance, highly stretchable, and flexible moist-electric generator (MEG) is developed via molecular engineering of hydrogels. The molecular engineering involves the impregnation of lithium ions and sulfonic acid groups into the polymer molecular chains to create ion-conductive and stretchable hydrogels. This new strategy fully leverages the molecular structure of polymer chains, circumventing the addition of extra elastomers or conductors. A centimeter-sized hydrogel-based MEG can generate an open-circuit voltage of 0.81 V and a short-circuit current density of up to 480 µA cm−2. This current density is more than ten times that of most reported MEGs. Moreover, molecular engineering improves the mechanical properties of hydrogels, resulting in a stretchability of 506%, representing the state-of-the-art level in reported MEGs. Notably, large-scale integration of the high-performance and stretchable MEGs is demonstrated to power wearables with integrated electronics, including respiration monitoring masks, smart helmets, and medical suits. This work provides fresh insights into the design of high-performance and stretchable MEGs, facilitating their application to self-powered wearables and broadening the application scenario.
中文翻译:
通过水凝胶的分子工程制造高性能、高可拉伸、灵活的湿电发电机
从无处不在的水分中收集能量已成为一项很有前途的技术,为可穿戴电子产品提供动力。然而,低电流密度和拉伸不足限制了它们在自供电可穿戴设备中的集成。在此,通过水凝胶的分子工程开发了一种高性能、高拉伸性和柔性的湿电发生器 (MEG)。分子工程涉及将锂离子和磺酸基团浸渍到聚合物分子链中,以产生离子导电和可拉伸的水凝胶。这种新策略充分利用了聚合物链的分子结构,避免了添加额外的弹性体或导体。厘米大小的基于水凝胶的 MEG 可以产生 0.81 V 的开路电压和高达 480 µA cm 的短路电流密度-2。该电流密度是大多数报道的 MEG 的十倍以上。此外,分子工程改善了水凝胶的机械性能,使拉伸性达到 506%,代表了已报道的 MEG 的最先进水平。值得注意的是,高性能和可拉伸 MEG 的大规模集成被证明可以为具有集成电子设备的可穿戴设备提供动力,包括呼吸监测面罩、智能头盔和医疗服。这项工作为高性能和可伸缩 MEG 的设计提供了新的见解,促进了它们在自供电可穿戴设备中的应用并拓宽了应用场景。
更新日期:2023-02-22
中文翻译:
通过水凝胶的分子工程制造高性能、高可拉伸、灵活的湿电发电机
从无处不在的水分中收集能量已成为一项很有前途的技术,为可穿戴电子产品提供动力。然而,低电流密度和拉伸不足限制了它们在自供电可穿戴设备中的集成。在此,通过水凝胶的分子工程开发了一种高性能、高拉伸性和柔性的湿电发生器 (MEG)。分子工程涉及将锂离子和磺酸基团浸渍到聚合物分子链中,以产生离子导电和可拉伸的水凝胶。这种新策略充分利用了聚合物链的分子结构,避免了添加额外的弹性体或导体。厘米大小的基于水凝胶的 MEG 可以产生 0.81 V 的开路电压和高达 480 µA cm 的短路电流密度-2。该电流密度是大多数报道的 MEG 的十倍以上。此外,分子工程改善了水凝胶的机械性能,使拉伸性达到 506%,代表了已报道的 MEG 的最先进水平。值得注意的是,高性能和可拉伸 MEG 的大规模集成被证明可以为具有集成电子设备的可穿戴设备提供动力,包括呼吸监测面罩、智能头盔和医疗服。这项工作为高性能和可伸缩 MEG 的设计提供了新的见解,促进了它们在自供电可穿戴设备中的应用并拓宽了应用场景。