Nature Communications ( IF 14.7 ) Pub Date : 2023-02-22 , DOI: 10.1038/s41467-023-36646-2 Bin Shao 1 , Zhi-Qiang Wang 1 , Xue-Qing Gong 1 , Honglai Liu 1, 2 , Feng Qian 3 , P Hu 1, 4 , Jun Hu 1
The integrated CO2 capture and conversion (iCCC) technology has been booming as a promising cost-effective approach for Carbon Neutrality. However, the lack of the long-sought molecular consensus about the synergistic effect between the adsorption and in-situ catalytic reaction hinders its development. Herein, we illustrate the synergistic promotions between CO2 capture and in-situ conversion through constructing the consecutive high-temperature Calcium-looping and dry reforming of methane processes. With systematic experimental measurements and density functional theory calculations, we reveal that the pathways of the reduction of carbonate and the dehydrogenation of CH4 can be interactively facilitated by the participation of the intermediates produced in each process on the supported Ni–CaO composite catalyst. Specifically, the adsorptive/catalytic interface, which is controlled by balancing the loading density and size of Ni nanoparticles on porous CaO, plays an essential role in the ultra-high CO2 and CH4 conversions of 96.5% and 96.0% at 650 °C, respectively.
中文翻译:
CO2 捕获与 Ni-CaO 复合催化剂原位转化之间的协同促进
集成的 CO 2捕获和转化 (iCCC) 技术作为一种有前途的具有成本效益的碳中和方法一直在蓬勃发展。然而,缺乏长期寻求的关于吸附和原位催化反应之间协同作用的分子共识阻碍了其发展。在此,我们通过构建连续的高温钙循环和甲烷干法重整过程,说明了 CO 2捕获和原位转化之间的协同促进作用。通过系统的实验测量和密度泛函理论计算,我们揭示了碳酸盐还原和CH 4脱氢的途径可以通过在负载型 Ni-CaO 复合催化剂上每个过程中产生的中间体的参与来交互促进。具体而言,通过平衡多孔 CaO 上 Ni 纳米粒子的负载密度和尺寸来控制的吸附/催化界面在 650 °C 下 96.5% 和 96.0% 的超高 CO 2 和 CH 4 转化率中起着至关重要的作用, 分别。