糖皮质激素和褪黑激素之间的生理串扰在调节昼夜节律方面维持神经元稳态。然而,糖皮质激素的应激诱导水平会通过增加糖皮质激素受体 (GR) 的活性来触发线粒体功能障碍,包括有缺陷的线粒体自噬,从而导致神经元细胞死亡。然后褪黑激素抑制糖皮质激素诱导的应激反应性神经变性;然而,褪黑激素的调节机制,即参与GR活性的相关蛋白,尚未阐明。因此,我们研究了褪黑激素如何调节与 GR 运输相关的伴侣蛋白进入细胞核以抑制糖皮质激素的作用。在这项研究中,糖皮质激素对抑制 NIX 介导的线粒体自噬的影响,随后是线粒体功能障碍、神经元细胞凋亡、褪黑激素治疗可通过抑制 SH-SY5Y 细胞和小鼠海马组织中 GR 的核转位来逆转认知缺陷。此外,褪黑激素选择性地抑制 FKBP 脯氨酰异构酶 4 (FKBP4) 的表达,FKBP4 是一种与动力蛋白协同作用的辅助伴侣蛋白,可减少 GRs 在伴侣蛋白和核运输蛋白之间的核转位。在细胞和海马组织中,褪黑激素上调与 Gαq 结合的褪黑激素受体 1 (MT1),从而触发 ERK1 的磷酸化。激活的 ERK 然后增强 DNA 甲基转移酶 1 (DNMT1) 介导的高甲基化 褪黑激素选择性地抑制 FKBP 脯氨酰异构酶 4 (FKBP4) 的表达,FKBP4 是一种与动力蛋白协同作用的辅助伴侣蛋白,可减少 GRs 在伴侣蛋白和核运输蛋白之间的核转位。在细胞和海马组织中,褪黑激素上调与 Gαq 结合的褪黑激素受体 1 (MT1),从而触发 ERK1 的磷酸化。激活的 ERK 然后增强 DNA 甲基转移酶 1 (DNMT1) 介导的高甲基化 褪黑激素选择性地抑制 FKBP 脯氨酰异构酶 4 (FKBP4) 的表达,FKBP4 是一种与动力蛋白协同作用的辅助伴侣蛋白,可减少 GRs 在伴侣蛋白和核运输蛋白之间的核转位。在细胞和海马组织中,褪黑激素上调与 Gαq 结合的褪黑激素受体 1 (MT1),从而触发 ERK1 的磷酸化。激活的 ERK 然后增强 DNA 甲基转移酶 1 (DNMT1) 介导的高甲基化FKBP52启动子,减少 GR 介导的线粒体功能障碍和细胞凋亡,其作用可通过敲低DNMT1来逆转。总之,褪黑激素通过增强 DNMT1 介导的 FKBP4 下调减少 GRs 的核转位,从而对糖皮质激素诱导的线粒体自噬缺陷和神经变性具有保护作用。
"点击查看英文标题和摘要"
Melatonin-mediated FKBP4 downregulation protects against stress-induced neuronal mitochondria dysfunctions by blocking nuclear translocation of GR
The physiological crosstalk between glucocorticoid and melatonin maintains neuronal homeostasis in regulating circadian rhythms. However, the stress-inducing level of glucocorticoid triggers mitochondrial dysfunction including defective mitophagy by increasing the activity of glucocorticoid receptors (GRs), leading to neuronal cell death. Melatonin then suppresses glucocorticoid-induced stress-responsive neurodegeneration; however, the regulatory mechanism of melatonin, i.e., associated proteins involved in GR activity, has not been elucidated. Therefore, we investigated how melatonin regulates chaperone proteins related to GR trafficking into the nucleus to suppress glucocorticoid action. In this study, the effects of glucocorticoid on suppressing NIX-mediated mitophagy, followed by mitochondrial dysfunction, neuronal cell apoptosis, and cognitive deficits were reversed by melatonin treatment by inhibiting the nuclear translocation of GRs in both SH-SY5Y cells and mouse hippocampal tissue. Moreover, melatonin selectively suppressed the expression of FKBP prolyl isomerase 4 (FKBP4), which is a co-chaperone protein that works with dynein, to reduce the nuclear translocation of GRs among the chaperone proteins and nuclear trafficking proteins. In both cells and hippocampal tissue, melatonin upregulated melatonin receptor 1 (MT1) bound to Gαq, which triggered the phosphorylation of ERK1. The activated ERK then enhanced DNA methyltransferase 1 (DNMT1)-mediated hypermethylation of FKBP52 promoter, reducing GR-mediated mitochondrial dysfunction and cell apoptosis, the effects of which were reversed by knocking down DNMT1. Taken together, melatonin has a protective effect against glucocorticoid-induced defective mitophagy and neurodegeneration by enhancing DNMT1-mediated FKBP4 downregulation that reduced the nuclear translocation of GRs.