Scientific Reports ( IF 3.8 ) Pub Date : 2023-02-20 , DOI: 10.1038/s41598-023-29895-0 Nantharat Wongfaed 1 , Sompong O-Thong 2 , Sureewan Sittijunda 3 , Alissara Reungsang 1, 4, 5
Lignocellulosic biomass is a promising substrate for biogas production. However, its recalcitrant structure limits conversion efficiency. This study aims to design a microbial consortium (MC) capable of producing the cellulolytic enzyme and exploring the taxonomic and genetic aspects of lignocellulose degradation. A diverse range of lignocellulolytic bacteria and degrading enzymes from various habitats were enriched for a known KKU-MC1. The KKU-MC1 was found to be abundant in Bacteroidetes (51%), Proteobacteria (29%), Firmicutes (10%), and other phyla (8% unknown, 0.4% unclassified, 0.6% archaea, and the remaining 1% other bacteria with low predominance). Carbohydrate-active enzyme (CAZyme) annotation revealed that the genera Bacteroides, Ruminiclostridium, Enterococcus, and Parabacteroides encoded a diverse set of cellulose and hemicellulose degradation enzymes. Furthermore, the gene families associated with lignin deconstruction were more abundant in the Pseudomonas genera. Subsequently, the effects of MC on methane production from various biomasses were studied in two ways: bioaugmentation and pre-hydrolysis. Methane yield (MY) of pre-hydrolysis cassava bagasse (CB), Napier grass (NG), and sugarcane bagasse (SB) with KKU-MC1 for 5 days improved by 38–56% compared to non-prehydrolysis substrates, while MY of prehydrolysed filter cake (FC) for 15 days improved by 56% compared to raw FC. The MY of CB, NG, and SB (at 4% initial volatile solid concentration (IVC)) with KKU-MC1 augmentation improved by 29–42% compared to the non-augmentation treatment. FC (1% IVC) had 17% higher MY than the non-augmentation treatment. These findings demonstrated that KKU-MC1 released the cellulolytic enzyme capable of decomposing various lignocellulosic biomasses, resulting in increased biogas production.
中文翻译:
纤维素分解微生物群 KKU-MC1 的分类学和酶学基础及其在提高生物甲烷产量中的应用
木质纤维素生物质是一种很有前途的沼气生产底物。然而,其顽固的结构限制了转换效率。本研究旨在设计一种能够产生纤维素分解酶的微生物群落 (MC),并探索木质纤维素降解的分类学和遗传学方面。已知的 KKU-MC1 丰富了来自不同栖息地的各种木质纤维素分解细菌和降解酶。KKU-MC1 被发现富含拟杆菌(51%)、变形杆菌(29%)、厚壁菌(10%) 和其他门(8% 未知,0.4% 未分类,0.6% 古细菌,其余 1% 其他)低优势细菌)。碳水化合物活性酶 (CAZyme) 注释显示拟杆菌属, 瘤胃梭菌、 肠球菌和副杆菌编码一组不同的纤维素和半纤维素降解酶。此外,与木质素解构相关的基因家族在假单胞菌属中更为丰富。随后,通过两种方式研究了 MC 对各种生物质产生甲烷的影响:生物强化和预水解。预水解木薯甘蔗渣 (CB) 的甲烷产量 (MY),Napier与非预水解底物相比,使用 KKU-MC1 处理 5 天的草 (NG) 和甘蔗渣 (SB) 提高了 38-56%,而预水解滤饼 (FC) 处理 15 天的 MY 与原始相比提高了 56% FC。与非强化处理相比,使用 KKU-MC1 强化的 CB、NG 和 SB(初始挥发性固体浓度 (IVC) 为 4%)的 MY 提高了 29-42%。FC (1% IVC) 的 MY 比非强化治疗高 17%。这些发现表明,KKU-MC1 释放了能够分解各种木质纤维素生物质的纤维素分解酶,从而增加了沼气产量。