当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Controlled Interfacial Polymer Self-Assembly Coordinates Ultrahigh Drug Loading and Zero-Order Release in Particles Prepared under Continuous Flow
Advanced Materials ( IF 27.4 ) Pub Date : 2023-02-19 , DOI: 10.1002/adma.202211254 Pei Zhang 1, 2 , Yingxin Liu 1 , Guobing Feng 1 , Cong Li 3 , Jun Zhou 1 , Chunyang Du 1 , Yuancheng Bai 1 , Shuai Hu 1 , Tianhe Huang 1 , Guan Wang 1 , Peng Quan 4 , Jouni Hirvonen 2 , Jin Fan 3 , Hélder A Santos 2, 5, 6 , Dongfei Liu 1, 2, 7
Advanced Materials ( IF 27.4 ) Pub Date : 2023-02-19 , DOI: 10.1002/adma.202211254 Pei Zhang 1, 2 , Yingxin Liu 1 , Guobing Feng 1 , Cong Li 3 , Jun Zhou 1 , Chunyang Du 1 , Yuancheng Bai 1 , Shuai Hu 1 , Tianhe Huang 1 , Guan Wang 1 , Peng Quan 4 , Jouni Hirvonen 2 , Jin Fan 3 , Hélder A Santos 2, 5, 6 , Dongfei Liu 1, 2, 7
Affiliation
Microparticles are successfully engineered through controlled interfacial self-assembly of polymers to harmonize ultrahigh drug loading with zero-order release of protein payloads. To address their poor miscibility with carrier materials, protein molecules are transformed into nanoparticles, whose surfaces are covered with polymer molecules. This polymer layer hinders the transfer of cargo nanoparticles from oil to water, achieving superior encapsulation efficiency (up to 99.9%). To control payload release, the polymer density at the oil–water interface is enhanced, forming a compact shell for microparticles. The resultant microparticles can harvest up to 49.9% mass fraction of proteins with zero-order release kinetics in vivo, enabling an efficient glycemic control in type 1 diabetes. Moreover, the precise control of engineering process offered through continuous flow results in high batch-to-batch reproducibility and, ultimately, excellent scale-up feasibility.
中文翻译:
受控界面聚合物自组装协调在连续流动下制备的颗粒中的超高载药量和零级释放
通过聚合物的受控界面自组装成功设计出微粒,以协调超高载药量与蛋白质有效载荷的零级释放。为了解决它们与载体材料的混溶性差的问题,将蛋白质分子转化为纳米颗粒,其表面覆盖有聚合物分子。该聚合物层阻碍了货物纳米颗粒从油中转移到水中,实现了卓越的封装效率(高达 99.9%)。为了控制有效载荷的释放,提高了油水界面处的聚合物密度,形成了微粒的致密壳。由此产生的微粒可以在体内收集高达 49.9% 质量分数的蛋白质,具有零级释放动力学,从而能够在 1 型糖尿病中实现有效的血糖控制。而且,
更新日期:2023-02-19
中文翻译:
受控界面聚合物自组装协调在连续流动下制备的颗粒中的超高载药量和零级释放
通过聚合物的受控界面自组装成功设计出微粒,以协调超高载药量与蛋白质有效载荷的零级释放。为了解决它们与载体材料的混溶性差的问题,将蛋白质分子转化为纳米颗粒,其表面覆盖有聚合物分子。该聚合物层阻碍了货物纳米颗粒从油中转移到水中,实现了卓越的封装效率(高达 99.9%)。为了控制有效载荷的释放,提高了油水界面处的聚合物密度,形成了微粒的致密壳。由此产生的微粒可以在体内收集高达 49.9% 质量分数的蛋白质,具有零级释放动力学,从而能够在 1 型糖尿病中实现有效的血糖控制。而且,