直链烷基苯磺酸盐 (LAS) 是清洁剂和洗涤剂中最常用的阴离子表面活性剂。本研究以十二烷基苯磺酸钠 (SDBS) 为目标 LAS,研究了 LAS 在集成人工湿地-微生物燃料电池 (CW-MFC) 系统中的降解和转化。结果表明,由于SDBS的两亲性和增溶性,SDBS能够通过降低有机物和电子的跨膜转移阻力来提高功率输出并降低CW-MFCs的内阻,但是,相对高浓度的SDBS有很大的抑制潜力由于对微生物的毒性作用,CW-MFCs 的发电和有机物生物降解。SDBS的烷基上的C原子和磺酸基上的O原子具有较大的电负性,易发生氧化反应。SDBS在CW-MFCs中的生物降解是在辅酶和氧的作用下,通过ω、β和/或α-氧化以及自由基攻击依次发生烷基链降解、脱磺化和苯环断裂的过程,产生19个中间体,包括四种厌氧降解产物(甲苯、苯酚、环己酮和乙酸)。特别是,首次在 LAS 的生物降解过程中检测到环己酮。通过CW-MFCs的降解大大降低了SDBS的生物蓄积潜力,从而有效降低了SDBS的环境风险。在辅酶和氧的作用下,通过ω、β和/或α-氧化和自由基攻击依次脱磺化和苯环裂解,产生19个中间体,包括4种厌氧降解产物(甲苯、苯酚、环己酮和乙酸) . 特别是,首次在 LAS 的生物降解过程中检测到环己酮。通过CW-MFCs的降解大大降低了SDBS的生物蓄积潜力,从而有效降低了SDBS的环境风险。在辅酶和氧的作用下,通过ω、β和/或α-氧化和自由基攻击依次脱磺化和苯环裂解,产生19个中间体,包括4种厌氧降解产物(甲苯、苯酚、环己酮和乙酸) . 特别是,首次在 LAS 的生物降解过程中检测到环己酮。通过CW-MFCs的降解大大降低了SDBS的生物蓄积潜力,从而有效降低了SDBS的环境风险。在 LAS 的生物降解过程中首次检测到环己酮。通过CW-MFCs的降解大大降低了SDBS的生物蓄积潜力,从而有效降低了SDBS的环境风险。在 LAS 的生物降解过程中首次检测到环己酮。通过CW-MFCs的降解大大降低了SDBS的生物蓄积潜力,从而有效降低了SDBS的环境风险。
"点击查看英文标题和摘要"
Degradation and transformation of linear alkyl-benzene sulfonates (LAS) in integrated constructed wetland–microbial fuel cell systems
Linear alkylbenzene sulfonates (LAS) are the most commonly-used anionic surfactants in cleaning agents and detergents. Taking sodium dodecyl benzene sulfonate (SDBS) as the target LAS, this study investigated the degradation and transformation of LAS in integrated constructed wetland–microbial fuel cell (CW–MFC) systems. Results showed that, SDBS was able to improve the power output and reduce the internal resistance of CW–MFCs by reducing transmembrane transfer resistance of organics and electrons because of the amphiphilicity and solubilization, however, SDBS with relatively high concentration had a great potential to inhibit electricity generation and organics biodegradation of CW–MFCs because of the toxic effects on microorganisms. C atoms on alkyl group and O atoms on sulfonic acid group of SDBS had greater electronegativity and were prone to oxidation reaction. The biodegradation of SDBS in CW–MFCs was a process of alkyl chain degradation, desulfonation and benzene ring cleavage in sequence via ω, β and/or α-oxidations and radical attacks under the action of coenzymes and oxygen, in which 19 intermediates were produced, including four anaerobic degradation products (toluene, phenol, cyclohexanone and acetic acid). Especially, for the first time cyclohexanone was detected during the biodegradation of LAS. The bioaccumulation potential of SDBS was greatly reduced through the degradation by CW–MFCs, and thus the environmental risk of SDBS was effectively reduced.