Environmental Pollution ( IF 7.6 ) Pub Date : 2023-02-17 , DOI: 10.1016/j.envpol.2023.121284 Pierre Lemée 1 , Valérie Fessard 1 , Denis Habauzit 1
Mycotoxins and their metabolites are a family of compounds that contains a great diversity of both structure and biological properties. Information on their toxicity is spread within several databases and in scientific literature. Due to the number of molecules and their structure diversity, the cost and time required for hazard evaluation of each compound is unrealistic.
In that purpose, new approach methodologies (NAMs) can be applied to evaluate such large set of molecules. Among them, quantitative structure-activity relationship (QSAR) in silico models could be useful to predict the mutagenic and carcinogenic properties of mycotoxins.
First, a complete list of 904 mycotoxins and metabolites was built. Then, some known mycotoxins were used to determine the best QSAR tools for mutagenicity and carcinogenicity predictions. The best tool was further applied to the whole list of 904 mycotoxins. At the end, 95 mycotoxins were identified as both mutagen and carcinogen and should be prioritized for further evaluation.
中文翻译:
使用组合的计算机 QSAR 方法根据致突变性和致癌性评估确定霉菌毒素的优先级
霉菌毒素及其代谢物是一类化合物,其结构和生物学特性都非常多样化。有关其毒性的信息散布在多个数据库和科学文献中。由于分子的数量及其结构的多样性,对每种化合物进行危害评估所需的成本和时间是不现实的。
为此,可以应用新方法学 (NAM) 来评估如此庞大的分子集。其中,计算机模型中的定量构效关系 (QSAR) 可用于预测霉菌毒素的诱变和致癌特性。
首先,建立了 904 种霉菌毒素和代谢物的完整列表。然后,使用一些已知的霉菌毒素来确定用于致突变性和致癌性预测的最佳 QSAR 工具。最佳工具进一步应用于 904 种霉菌毒素的整个列表。最后,95 种霉菌毒素被确定为诱变剂和致癌物,应优先进行进一步评估。