当前位置:
X-MOL 学术
›
Macromolecules
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Massively Parallel Aligned Poly(vinylidene fluoride) Nanofibrils in All-Organic Dielectric Polymer Composite Films for Electric Energy Storage
Macromolecules ( IF 5.1 ) Pub Date : 2023-02-16 , DOI: 10.1021/acs.macromol.2c02563 Chun-Yan Liu 1 , De-Long Li 1 , Zhi-Hao Wang 1 , Yue Li 1 , Sheng-Yang Zhou 2 , Ling Xu 3 , Gan-Ji Zhong 1 , Hua-Dong Huang 1 , Zhong-Ming Li 1
Macromolecules ( IF 5.1 ) Pub Date : 2023-02-16 , DOI: 10.1021/acs.macromol.2c02563 Chun-Yan Liu 1 , De-Long Li 1 , Zhi-Hao Wang 1 , Yue Li 1 , Sheng-Yang Zhou 2 , Ling Xu 3 , Gan-Ji Zhong 1 , Hua-Dong Huang 1 , Zhong-Ming Li 1
Affiliation
It is a formidable challenge to combine the performance advantages of linear and nonlinear polymer dielectrics for developing all-organic film capacitors with high energy density and low loss. In this work, massively parallel aligned poly(vinylidene fluoride) (PVDF) nanofibrils were in situ fabricated for the first time in the polyethylene (PE) matrix via a multistage stretching technology involving hot stretching and solid-state stretching at an elevated temperature. The largely enhanced interfacial area of PVDF nanofibrils could effectively induce interfacial polarization, imparting PE composite films with a high dielectric constant of 4.50. More interestingly, the nanoconfinement effect of PVDF nanofibrils greatly restricted the migration of free electrons and impurity ions, and an impressive breakdown strength of 624 MV m–1 was obtained. As a result, the as-prepared PE/PVDF composite films exhibited an attractive discharged energy density of as high as 6.4 J cm–3, which was more than 10 times of the conventional counterparts, and outperformed the current linear dielectric polymers. The ingenious structure design of in situ nonlinear dielectric nanofibrils provides a promising approach to maximize the advantageous polarizations and minimize the disadvantageous polarizations in the linear and nonlinear polymer dielectric blends, achieving all-organic polymer dielectric composite films with high energy density and low loss.
中文翻译:
用于电能存储的全有机介电聚合物复合膜中的大规模平行排列的聚(偏二氟乙烯)纳米纤维
结合线性和非线性聚合物电介质的性能优势来开发具有高能量密度和低损耗的全有机薄膜电容器是一项艰巨的挑战。在这项工作中,大规模平行排列的聚偏二氟乙烯 (PVDF) 纳米原纤维首次在聚乙烯 (PE) 基质中通过多级拉伸技术在高温下进行热拉伸和固态拉伸原位制备。PVDF 纳米纤维大大增强的界面面积可以有效地诱导界面极化,赋予 PE 复合薄膜介电常数高达 4.50。更有趣的是,PVDF 纳米纤维的纳米限制效应大大限制了自由电子和杂质离子的迁移,击穿强度高达 624 MV m获得了-1 。因此,所制备的 PE/PVDF 复合薄膜表现出高达 6.4 J cm -3 的吸引人的放电能量密度,是传统同类薄膜的 10 倍以上,优于目前的线性介电聚合物。原位非线性介电纳米原纤维的巧妙结构设计提供了一种有前途的方法来最大化线性和非线性聚合物介电共混物中的有利极化和最小化不利极化,从而实现具有高能量密度和低损耗的全有机聚合物介电复合薄膜。
更新日期:2023-02-16
中文翻译:
用于电能存储的全有机介电聚合物复合膜中的大规模平行排列的聚(偏二氟乙烯)纳米纤维
结合线性和非线性聚合物电介质的性能优势来开发具有高能量密度和低损耗的全有机薄膜电容器是一项艰巨的挑战。在这项工作中,大规模平行排列的聚偏二氟乙烯 (PVDF) 纳米原纤维首次在聚乙烯 (PE) 基质中通过多级拉伸技术在高温下进行热拉伸和固态拉伸原位制备。PVDF 纳米纤维大大增强的界面面积可以有效地诱导界面极化,赋予 PE 复合薄膜介电常数高达 4.50。更有趣的是,PVDF 纳米纤维的纳米限制效应大大限制了自由电子和杂质离子的迁移,击穿强度高达 624 MV m获得了-1 。因此,所制备的 PE/PVDF 复合薄膜表现出高达 6.4 J cm -3 的吸引人的放电能量密度,是传统同类薄膜的 10 倍以上,优于目前的线性介电聚合物。原位非线性介电纳米原纤维的巧妙结构设计提供了一种有前途的方法来最大化线性和非线性聚合物介电共混物中的有利极化和最小化不利极化,从而实现具有高能量密度和低损耗的全有机聚合物介电复合薄膜。